File: /Users/paulross/dev/linux/linux-3.13/include/linux/clocksource.h

Green shading in the line number column means the source is part of the translation unit, red means it is conditionally excluded. Highlighted line numbers link to the translation unit page. Highlighted macros link to the macro page.

       1: /*  linux/include/linux/clocksource.h
       2:  *
       3:  *  This file contains the structure definitions for clocksources.
       4:  *
       5:  *  If you are not a clocksource, or timekeeping code, you should
       6:  *  not be including this file!
       7:  */
       8: #ifndef _LINUX_CLOCKSOURCE_H
       9: #define _LINUX_CLOCKSOURCE_H
      10: 
      11: #include <linux/types.h>
      12: #include <linux/timex.h>
      13: #include <linux/time.h>
      14: #include <linux/list.h>
      15: #include <linux/cache.h>
      16: #include <linux/timer.h>
      17: #include <linux/init.h>
      18: #include <asm/div64.h>
      19: #include <asm/io.h>
      20: 
      21: /* clocksource cycle base type */
      22: typedef u64 cycle_t;
      23: struct clocksource;
      24: struct module;
      25: 
      26: #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
      27: #include <asm/clocksource.h>
      28: #endif
      29: 
      30: /**
      31:  * struct cyclecounter - hardware abstraction for a free running counter
      32:  *    Provides completely state-free accessors to the underlying hardware.
      33:  *    Depending on which hardware it reads, the cycle counter may wrap
      34:  *    around quickly. Locking rules (if necessary) have to be defined
      35:  *    by the implementor and user of specific instances of this API.
      36:  *
      37:  * @read:        returns the current cycle value
      38:  * @mask:        bitmask for two's complement
      39:  *            subtraction of non 64 bit counters,
      40:  *            see CLOCKSOURCE_MASK() helper macro
      41:  * @mult:        cycle to nanosecond multiplier
      42:  * @shift:        cycle to nanosecond divisor (power of two)
      43:  */
      44: struct cyclecounter {
      45:     cycle_t (*read)(const struct cyclecounter *cc);
      46:     cycle_t mask;
      47:     u32 mult;
      48:     u32 shift;
      49: };
      50: 
      51: /**
      52:  * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
      53:  *    Contains the state needed by timecounter_read() to detect
      54:  *    cycle counter wrap around. Initialize with
      55:  *    timecounter_init(). Also used to convert cycle counts into the
      56:  *    corresponding nanosecond counts with timecounter_cyc2time(). Users
      57:  *    of this code are responsible for initializing the underlying
      58:  *    cycle counter hardware, locking issues and reading the time
      59:  *    more often than the cycle counter wraps around. The nanosecond
      60:  *    counter will only wrap around after ~585 years.
      61:  *
      62:  * @cc:            the cycle counter used by this instance
      63:  * @cycle_last:        most recent cycle counter value seen by
      64:  *            timecounter_read()
      65:  * @nsec:        continuously increasing count
      66:  */
      67: struct timecounter {
      68:     const struct cyclecounter *cc;
      69:     cycle_t cycle_last;
      70:     u64 nsec;
      71: };
      72: 
      73: /**
      74:  * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
      75:  * @cc:        Pointer to cycle counter.
      76:  * @cycles:    Cycles
      77:  *
      78:  * XXX - This could use some mult_lxl_ll() asm optimization. Same code
      79:  * as in cyc2ns, but with unsigned result.
      80:  */
      81: static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
      82:                       cycle_t cycles)
      83: {
      84:     u64 ret = (u64)cycles;
      85:     ret = (ret * cc->mult) >> cc->shift;
      86:     return ret;
      87: }
      88: 
      89: /**
      90:  * timecounter_init - initialize a time counter
      91:  * @tc:            Pointer to time counter which is to be initialized/reset
      92:  * @cc:            A cycle counter, ready to be used.
      93:  * @start_tstamp:    Arbitrary initial time stamp.
      94:  *
      95:  * After this call the current cycle register (roughly) corresponds to
      96:  * the initial time stamp. Every call to timecounter_read() increments
      97:  * the time stamp counter by the number of elapsed nanoseconds.
      98:  */
      99: extern void timecounter_init(struct timecounter *tc,
     100:                  const struct cyclecounter *cc,
     101:                  u64 start_tstamp);
     102: 
     103: /**
     104:  * timecounter_read - return nanoseconds elapsed since timecounter_init()
     105:  *                    plus the initial time stamp
     106:  * @tc:          Pointer to time counter.
     107:  *
     108:  * In other words, keeps track of time since the same epoch as
     109:  * the function which generated the initial time stamp.
     110:  */
     111: extern u64 timecounter_read(struct timecounter *tc);
     112: 
     113: /**
     114:  * timecounter_cyc2time - convert a cycle counter to same
     115:  *                        time base as values returned by
     116:  *                        timecounter_read()
     117:  * @tc:        Pointer to time counter.
     118:  * @cycle_tstamp:    a value returned by tc->cc->read()
     119:  *
     120:  * Cycle counts that are converted correctly as long as they
     121:  * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
     122:  * with "max cycle count" == cs->mask+1.
     123:  *
     124:  * This allows conversion of cycle counter values which were generated
     125:  * in the past.
     126:  */
     127: extern u64 timecounter_cyc2time(struct timecounter *tc,
     128:                 cycle_t cycle_tstamp);
     129: 
     130: /**
     131:  * struct clocksource - hardware abstraction for a free running counter
     132:  *    Provides mostly state-free accessors to the underlying hardware.
     133:  *    This is the structure used for system time.
     134:  *
     135:  * @name:        ptr to clocksource name
     136:  * @list:        list head for registration
     137:  * @rating:        rating value for selection (higher is better)
     138:  *            To avoid rating inflation the following
     139:  *            list should give you a guide as to how
     140:  *            to assign your clocksource a rating
     141:  *            1-99: Unfit for real use
     142:  *                Only available for bootup and testing purposes.
     143:  *            100-199: Base level usability.
     144:  *                Functional for real use, but not desired.
     145:  *            200-299: Good.
     146:  *                A correct and usable clocksource.
     147:  *            300-399: Desired.
     148:  *                A reasonably fast and accurate clocksource.
     149:  *            400-499: Perfect
     150:  *                The ideal clocksource. A must-use where
     151:  *                available.
     152:  * @read:        returns a cycle value, passes clocksource as argument
     153:  * @enable:        optional function to enable the clocksource
     154:  * @disable:        optional function to disable the clocksource
     155:  * @mask:        bitmask for two's complement
     156:  *            subtraction of non 64 bit counters
     157:  * @mult:        cycle to nanosecond multiplier
     158:  * @shift:        cycle to nanosecond divisor (power of two)
     159:  * @max_idle_ns:    max idle time permitted by the clocksource (nsecs)
     160:  * @maxadj:        maximum adjustment value to mult (~11%)
     161:  * @flags:        flags describing special properties
     162:  * @archdata:        arch-specific data
     163:  * @suspend:        suspend function for the clocksource, if necessary
     164:  * @resume:        resume function for the clocksource, if necessary
     165:  * @cycle_last:        most recent cycle counter value seen by ::read()
     166:  * @owner:        module reference, must be set by clocksource in modules
     167:  */
     168: struct clocksource {
     169:     /*
     170:      * Hotpath data, fits in a single cache line when the
     171:      * clocksource itself is cacheline aligned.
     172:      */
     173:     cycle_t (*read)(struct clocksource *cs);
     174:     cycle_t cycle_last;
     175:     cycle_t mask;
     176:     u32 mult;
     177:     u32 shift;
     178:     u64 max_idle_ns;
     179:     u32 maxadj;
     180: #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
     181:     struct arch_clocksource_data archdata;
     182: #endif
     183: 
     184:     const char *name;
     185:     struct list_head list;
     186:     int rating;
     187:     int (*enable)(struct clocksource *cs);
     188:     void (*disable)(struct clocksource *cs);
     189:     unsigned long flags;
     190:     void (*suspend)(struct clocksource *cs);
     191:     void (*resume)(struct clocksource *cs);
     192: 
     193:     /* private: */
     194: #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
     195:     /* Watchdog related data, used by the framework */
     196:     struct list_head wd_list;
     197:     cycle_t cs_last;
     198:     cycle_t wd_last;
     199: #endif
     200:     struct module *owner;
     201: } ____cacheline_aligned;
     202: 
     203: /*
     204:  * Clock source flags bits::
     205:  */
     206: #define CLOCK_SOURCE_IS_CONTINUOUS        0x01
     207: #define CLOCK_SOURCE_MUST_VERIFY        0x02
     208: 
     209: #define CLOCK_SOURCE_WATCHDOG            0x10
     210: #define CLOCK_SOURCE_VALID_FOR_HRES        0x20
     211: #define CLOCK_SOURCE_UNSTABLE            0x40
     212: #define CLOCK_SOURCE_SUSPEND_NONSTOP        0x80
     213: #define CLOCK_SOURCE_RESELECT            0x100
     214: 
     215: /* simplify initialization of mask field */
     216: #define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)
     217: 
     218: /**
     219:  * clocksource_khz2mult - calculates mult from khz and shift
     220:  * @khz:        Clocksource frequency in KHz
     221:  * @shift_constant:    Clocksource shift factor
     222:  *
     223:  * Helper functions that converts a khz counter frequency to a timsource
     224:  * multiplier, given the clocksource shift value
     225:  */
     226: static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
     227: {
     228:     /*  khz = cyc/(Million ns)
     229:      *  mult/2^shift  = ns/cyc
     230:      *  mult = ns/cyc * 2^shift
     231:      *  mult = 1Million/khz * 2^shift
     232:      *  mult = 1000000 * 2^shift / khz
     233:      *  mult = (1000000<<shift) / khz
     234:      */
     235:     u64 tmp = ((u64)1000000) << shift_constant;
     236: 
     237:     tmp += khz/2; /* round for do_div */
     238:     do_div(tmp, khz);
     239: 
     240:     return (u32)tmp;
     241: }
     242: 
     243: /**
     244:  * clocksource_hz2mult - calculates mult from hz and shift
     245:  * @hz:            Clocksource frequency in Hz
     246:  * @shift_constant:    Clocksource shift factor
     247:  *
     248:  * Helper functions that converts a hz counter
     249:  * frequency to a timsource multiplier, given the
     250:  * clocksource shift value
     251:  */
     252: static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
     253: {
     254:     /*  hz = cyc/(Billion ns)
     255:      *  mult/2^shift  = ns/cyc
     256:      *  mult = ns/cyc * 2^shift
     257:      *  mult = 1Billion/hz * 2^shift
     258:      *  mult = 1000000000 * 2^shift / hz
     259:      *  mult = (1000000000<<shift) / hz
     260:      */
     261:     u64 tmp = ((u64)1000000000) << shift_constant;
     262: 
     263:     tmp += hz/2; /* round for do_div */
     264:     do_div(tmp, hz);
     265: 
     266:     return (u32)tmp;
     267: }
     268: 
     269: /**
     270:  * clocksource_cyc2ns - converts clocksource cycles to nanoseconds
     271:  * @cycles:    cycles
     272:  * @mult:    cycle to nanosecond multiplier
     273:  * @shift:    cycle to nanosecond divisor (power of two)
     274:  *
     275:  * Converts cycles to nanoseconds, using the given mult and shift.
     276:  *
     277:  * XXX - This could use some mult_lxl_ll() asm optimization
     278:  */
     279: static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
     280: {
     281:     return ((u64) cycles * mult) >> shift;
     282: }
     283: 
     284: 
     285: extern int clocksource_register(struct clocksource*);
     286: extern int clocksource_unregister(struct clocksource*);
     287: extern void clocksource_touch_watchdog(void);
     288: extern struct clocksource* clocksource_get_next(void);
     289: extern void clocksource_change_rating(struct clocksource *cs, int rating);
     290: extern void clocksource_suspend(void);
     291: extern void clocksource_resume(void);
     292: extern struct clocksource * __init __weak clocksource_default_clock(void);
     293: extern void clocksource_mark_unstable(struct clocksource *cs);
     294: 
     295: extern u64
     296: clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask);
     297: extern void
     298: clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
     299: 
     300: /*
     301:  * Don't call __clocksource_register_scale directly, use
     302:  * clocksource_register_hz/khz
     303:  */
     304: extern int
     305: __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
     306: extern void
     307: __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq);
     308: 
     309: static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
     310: {
     311:     return __clocksource_register_scale(cs, 1, hz);
     312: }
     313: 
     314: static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
     315: {
     316:     return __clocksource_register_scale(cs, 1000, khz);
     317: }
     318: 
     319: static inline void __clocksource_updatefreq_hz(struct clocksource *cs, u32 hz)
     320: {
     321:     __clocksource_updatefreq_scale(cs, 1, hz);
     322: }
     323: 
     324: static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
     325: {
     326:     __clocksource_updatefreq_scale(cs, 1000, khz);
     327: }
     328: 
     329: 
     330: extern int timekeeping_notify(struct clocksource *clock);
     331: 
     332: extern cycle_t clocksource_mmio_readl_up(struct clocksource *);
     333: extern cycle_t clocksource_mmio_readl_down(struct clocksource *);
     334: extern cycle_t clocksource_mmio_readw_up(struct clocksource *);
     335: extern cycle_t clocksource_mmio_readw_down(struct clocksource *);
     336: 
     337: extern int clocksource_mmio_init(void __iomem *, const char *,
     338:     unsigned long, int, unsigned, cycle_t (*)(struct clocksource *));
     339: 
     340: extern int clocksource_i8253_init(void);
     341: 
     342: struct device_node;
     343: typedef void(*clocksource_of_init_fn)(struct device_node *);
     344: #ifdef CONFIG_CLKSRC_OF
     345: extern void clocksource_of_init(void);
     346: 
     347: #define CLOCKSOURCE_OF_DECLARE(name, compat, fn)            \
     348:     static const struct of_device_id __clksrc_of_table_##name    \
     349:         __used __section(__clksrc_of_table)            \
     350:          = { .compatible = compat,                \
     351:              .data = (fn == (clocksource_of_init_fn)NULL) ? fn : fn }
     352: #else
     353: static inline void clocksource_of_init(void) {}
     354: #define CLOCKSOURCE_OF_DECLARE(name, compat, fn)            \
     355:     static const struct of_device_id __clksrc_of_table_##name    \
     356:         __attribute__((unused))                    \
     357:          = { .compatible = compat,                \
     358:              .data = (fn == (clocksource_of_init_fn)NULL) ? fn : fn }
     359: #endif
     360: 
     361: #endif /* _LINUX_CLOCKSOURCE_H */
     362: