Green shading in the line number column means the source is part of the translation unit, red means it is conditionally excluded. Highlighted line numbers link to the translation unit page. Highlighted macros link to the macro page.
1: #ifndef _LINUX_MM_H 2: #define _LINUX_MM_H 3: 4: #include <linux/errno.h> 5: 6: #ifdef __KERNEL__ 7: 8: #include <linux/gfp.h> 9: #include <linux/bug.h> 10: #include <linux/list.h> 11: #include <linux/mmzone.h> 12: #include <linux/rbtree.h> 13: #include <linux/atomic.h> 14: #include <linux/debug_locks.h> 15: #include <linux/mm_types.h> 16: #include <linux/range.h> 17: #include <linux/pfn.h> 18: #include <linux/bit_spinlock.h> 19: #include <linux/shrinker.h> 20: 21: struct mempolicy; 22: struct anon_vma; 23: struct anon_vma_chain; 24: struct file_ra_state; 25: struct user_struct; 26: struct writeback_control; 27: 28: #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 29: extern unsigned long max_mapnr; 30: 31: static inline void set_max_mapnr(unsigned long limit) 32: { 33: max_mapnr = limit; 34: } 35: #else 36: static inline void set_max_mapnr(unsigned long limit) { } 37: #endif 38: 39: extern unsigned long totalram_pages; 40: extern void * high_memory; 41: extern int page_cluster; 42: 43: #ifdef CONFIG_SYSCTL 44: extern int sysctl_legacy_va_layout; 45: #else 46: #define sysctl_legacy_va_layout 0 47: #endif 48: 49: #include <asm/page.h> 50: #include <asm/pgtable.h> 51: #include <asm/processor.h> 52: 53: #ifndef __pa_symbol 54: #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 55: #endif 56: 57: extern unsigned long sysctl_user_reserve_kbytes; 58: extern unsigned long sysctl_admin_reserve_kbytes; 59: 60: #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 61: 62: /* to align the pointer to the (next) page boundary */ 63: #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 64: 65: /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 66: #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 67: 68: /* 69: * Linux kernel virtual memory manager primitives. 70: * The idea being to have a "virtual" mm in the same way 71: * we have a virtual fs - giving a cleaner interface to the 72: * mm details, and allowing different kinds of memory mappings 73: * (from shared memory to executable loading to arbitrary 74: * mmap() functions). 75: */ 76: 77: extern struct kmem_cache *vm_area_cachep; 78: 79: #ifndef CONFIG_MMU 80: extern struct rb_root nommu_region_tree; 81: extern struct rw_semaphore nommu_region_sem; 82: 83: extern unsigned int kobjsize(const void *objp); 84: #endif 85: 86: /* 87: * vm_flags in vm_area_struct, see mm_types.h. 88: */ 89: #define VM_NONE 0x00000000 90: 91: #define VM_READ 0x00000001 /* currently active flags */ 92: #define VM_WRITE 0x00000002 93: #define VM_EXEC 0x00000004 94: #define VM_SHARED 0x00000008 95: 96: /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 97: #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 98: #define VM_MAYWRITE 0x00000020 99: #define VM_MAYEXEC 0x00000040 100: #define VM_MAYSHARE 0x00000080 101: 102: #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 103: #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 104: #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 105: 106: #define VM_LOCKED 0x00002000 107: #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 108: 109: /* Used by sys_madvise() */ 110: #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 111: #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 112: 113: #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 114: #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 115: #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 116: #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 117: #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 118: #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 119: #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 120: #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 121: 122: #ifdef CONFIG_MEM_SOFT_DIRTY 123: # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 124: #else 125: # define VM_SOFTDIRTY 0 126: #endif 127: 128: #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 129: #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 130: #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 131: #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 132: 133: #if defined(CONFIG_X86) 134: # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 135: #elif defined(CONFIG_PPC) 136: # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 137: #elif defined(CONFIG_PARISC) 138: # define VM_GROWSUP VM_ARCH_1 139: #elif defined(CONFIG_METAG) 140: # define VM_GROWSUP VM_ARCH_1 141: #elif defined(CONFIG_IA64) 142: # define VM_GROWSUP VM_ARCH_1 143: #elif !defined(CONFIG_MMU) 144: # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 145: #endif 146: 147: #ifndef VM_GROWSUP 148: # define VM_GROWSUP VM_NONE 149: #endif 150: 151: /* Bits set in the VMA until the stack is in its final location */ 152: #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 153: 154: #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 155: #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 156: #endif 157: 158: #ifdef CONFIG_STACK_GROWSUP 159: #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 160: #else 161: #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 162: #endif 163: 164: /* 165: * Special vmas that are non-mergable, non-mlock()able. 166: * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 167: */ 168: #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 169: 170: /* 171: * mapping from the currently active vm_flags protection bits (the 172: * low four bits) to a page protection mask.. 173: */ 174: extern pgprot_t protection_map[16]; 175: 176: #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 177: #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 178: #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 179: #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 180: #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 181: #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 182: #define FAULT_FLAG_TRIED 0x40 /* second try */ 183: #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 184: 185: /* 186: * vm_fault is filled by the the pagefault handler and passed to the vma's 187: * ->fault function. The vma's ->fault is responsible for returning a bitmask 188: * of VM_FAULT_xxx flags that give details about how the fault was handled. 189: * 190: * pgoff should be used in favour of virtual_address, if possible. If pgoff 191: * is used, one may implement ->remap_pages to get nonlinear mapping support. 192: */ 193: struct vm_fault { 194: unsigned int flags; /* FAULT_FLAG_xxx flags */ 195: pgoff_t pgoff; /* Logical page offset based on vma */ 196: void __user *virtual_address; /* Faulting virtual address */ 197: 198: struct page *page; /* ->fault handlers should return a 199: * page here, unless VM_FAULT_NOPAGE 200: * is set (which is also implied by 201: * VM_FAULT_ERROR). 202: */ 203: }; 204: 205: /* 206: * These are the virtual MM functions - opening of an area, closing and 207: * unmapping it (needed to keep files on disk up-to-date etc), pointer 208: * to the functions called when a no-page or a wp-page exception occurs. 209: */ 210: struct vm_operations_struct { 211: void (*open)(struct vm_area_struct * area); 212: void (*close)(struct vm_area_struct * area); 213: int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 214: 215: /* notification that a previously read-only page is about to become 216: * writable, if an error is returned it will cause a SIGBUS */ 217: int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 218: 219: /* called by access_process_vm when get_user_pages() fails, typically 220: * for use by special VMAs that can switch between memory and hardware 221: */ 222: int (*access)(struct vm_area_struct *vma, unsigned long addr, 223: void *buf, int len, int write); 224: #ifdef CONFIG_NUMA 225: /* 226: * set_policy() op must add a reference to any non-NULL @new mempolicy 227: * to hold the policy upon return. Caller should pass NULL @new to 228: * remove a policy and fall back to surrounding context--i.e. do not 229: * install a MPOL_DEFAULT policy, nor the task or system default 230: * mempolicy. 231: */ 232: int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 233: 234: /* 235: * get_policy() op must add reference [mpol_get()] to any policy at 236: * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 237: * in mm/mempolicy.c will do this automatically. 238: * get_policy() must NOT add a ref if the policy at (vma,addr) is not 239: * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 240: * If no [shared/vma] mempolicy exists at the addr, get_policy() op 241: * must return NULL--i.e., do not "fallback" to task or system default 242: * policy. 243: */ 244: struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 245: unsigned long addr); 246: int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 247: const nodemask_t *to, unsigned long flags); 248: #endif 249: /* called by sys_remap_file_pages() to populate non-linear mapping */ 250: int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 251: unsigned long size, pgoff_t pgoff); 252: }; 253: 254: struct mmu_gather; 255: struct inode; 256: 257: #define page_private(page) ((page)->private) 258: #define set_page_private(page, v) ((page)->private = (v)) 259: 260: /* It's valid only if the page is free path or free_list */ 261: static inline void set_freepage_migratetype(struct page *page, int migratetype) 262: { 263: page->index = migratetype; 264: } 265: 266: /* It's valid only if the page is free path or free_list */ 267: static inline int get_freepage_migratetype(struct page *page) 268: { 269: return page->index; 270: } 271: 272: /* 273: * FIXME: take this include out, include page-flags.h in 274: * files which need it (119 of them) 275: */ 276: #include <linux/page-flags.h> 277: #include <linux/huge_mm.h> 278: 279: /* 280: * Methods to modify the page usage count. 281: * 282: * What counts for a page usage: 283: * - cache mapping (page->mapping) 284: * - private data (page->private) 285: * - page mapped in a task's page tables, each mapping 286: * is counted separately 287: * 288: * Also, many kernel routines increase the page count before a critical 289: * routine so they can be sure the page doesn't go away from under them. 290: */ 291: 292: /* 293: * Drop a ref, return true if the refcount fell to zero (the page has no users) 294: */ 295: static inline int put_page_testzero(struct page *page) 296: { 297: VM_BUG_ON(atomic_read(&page->_count) == 0); 298: return atomic_dec_and_test(&page->_count); 299: } 300: 301: /* 302: * Try to grab a ref unless the page has a refcount of zero, return false if 303: * that is the case. 304: * This can be called when MMU is off so it must not access 305: * any of the virtual mappings. 306: */ 307: static inline int get_page_unless_zero(struct page *page) 308: { 309: return atomic_inc_not_zero(&page->_count); 310: } 311: 312: /* 313: * Try to drop a ref unless the page has a refcount of one, return false if 314: * that is the case. 315: * This is to make sure that the refcount won't become zero after this drop. 316: * This can be called when MMU is off so it must not access 317: * any of the virtual mappings. 318: */ 319: static inline int put_page_unless_one(struct page *page) 320: { 321: return atomic_add_unless(&page->_count, -1, 1); 322: } 323: 324: extern int page_is_ram(unsigned long pfn); 325: 326: /* Support for virtually mapped pages */ 327: struct page *vmalloc_to_page(const void *addr); 328: unsigned long vmalloc_to_pfn(const void *addr); 329: 330: /* 331: * Determine if an address is within the vmalloc range 332: * 333: * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 334: * is no special casing required. 335: */ 336: static inline int is_vmalloc_addr(const void *x) 337: { 338: #ifdef CONFIG_MMU 339: unsigned long addr = (unsigned long)x; 340: 341: return addr >= VMALLOC_START && addr < VMALLOC_END; 342: #else 343: return 0; 344: #endif 345: } 346: #ifdef CONFIG_MMU 347: extern int is_vmalloc_or_module_addr(const void *x); 348: #else 349: static inline int is_vmalloc_or_module_addr(const void *x) 350: { 351: return 0; 352: } 353: #endif 354: 355: static inline void compound_lock(struct page *page) 356: { 357: #ifdef CONFIG_TRANSPARENT_HUGEPAGE 358: VM_BUG_ON(PageSlab(page)); 359: bit_spin_lock(PG_compound_lock, &page->flags); 360: #endif 361: } 362: 363: static inline void compound_unlock(struct page *page) 364: { 365: #ifdef CONFIG_TRANSPARENT_HUGEPAGE 366: VM_BUG_ON(PageSlab(page)); 367: bit_spin_unlock(PG_compound_lock, &page->flags); 368: #endif 369: } 370: 371: static inline unsigned long compound_lock_irqsave(struct page *page) 372: { 373: unsigned long uninitialized_var(flags); 374: #ifdef CONFIG_TRANSPARENT_HUGEPAGE 375: local_irq_save(flags); 376: compound_lock(page); 377: #endif 378: return flags; 379: } 380: 381: static inline void compound_unlock_irqrestore(struct page *page, 382: unsigned long flags) 383: { 384: #ifdef CONFIG_TRANSPARENT_HUGEPAGE 385: compound_unlock(page); 386: local_irq_restore(flags); 387: #endif 388: } 389: 390: static inline struct page *compound_head(struct page *page) 391: { 392: if (unlikely(PageTail(page))) 393: return page->first_page; 394: return page; 395: } 396: 397: /* 398: * The atomic page->_mapcount, starts from -1: so that transitions 399: * both from it and to it can be tracked, using atomic_inc_and_test 400: * and atomic_add_negative(-1). 401: */ 402: static inline void page_mapcount_reset(struct page *page) 403: { 404: atomic_set(&(page)->_mapcount, -1); 405: } 406: 407: static inline int page_mapcount(struct page *page) 408: { 409: return atomic_read(&(page)->_mapcount) + 1; 410: } 411: 412: static inline int page_count(struct page *page) 413: { 414: return atomic_read(&compound_head(page)->_count); 415: } 416: 417: static inline void get_huge_page_tail(struct page *page) 418: { 419: /* 420: * __split_huge_page_refcount() cannot run 421: * from under us. 422: */ 423: VM_BUG_ON(page_mapcount(page) < 0); 424: VM_BUG_ON(atomic_read(&page->_count) != 0); 425: atomic_inc(&page->_mapcount); 426: } 427: 428: extern bool __get_page_tail(struct page *page); 429: 430: static inline void get_page(struct page *page) 431: { 432: if (unlikely(PageTail(page))) 433: if (likely(__get_page_tail(page))) 434: return; 435: /* 436: * Getting a normal page or the head of a compound page 437: * requires to already have an elevated page->_count. 438: */ 439: VM_BUG_ON(atomic_read(&page->_count) <= 0); 440: atomic_inc(&page->_count); 441: } 442: 443: static inline struct page *virt_to_head_page(const void *x) 444: { 445: struct page *page = virt_to_page(x); 446: return compound_head(page); 447: } 448: 449: /* 450: * Setup the page count before being freed into the page allocator for 451: * the first time (boot or memory hotplug) 452: */ 453: static inline void init_page_count(struct page *page) 454: { 455: atomic_set(&page->_count, 1); 456: } 457: 458: /* 459: * PageBuddy() indicate that the page is free and in the buddy system 460: * (see mm/page_alloc.c). 461: * 462: * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 463: * -2 so that an underflow of the page_mapcount() won't be mistaken 464: * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 465: * efficiently by most CPU architectures. 466: */ 467: #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 468: 469: static inline int PageBuddy(struct page *page) 470: { 471: return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 472: } 473: 474: static inline void __SetPageBuddy(struct page *page) 475: { 476: VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 477: atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 478: } 479: 480: static inline void __ClearPageBuddy(struct page *page) 481: { 482: VM_BUG_ON(!PageBuddy(page)); 483: atomic_set(&page->_mapcount, -1); 484: } 485: 486: void put_page(struct page *page); 487: void put_pages_list(struct list_head *pages); 488: 489: void split_page(struct page *page, unsigned int order); 490: int split_free_page(struct page *page); 491: 492: /* 493: * Compound pages have a destructor function. Provide a 494: * prototype for that function and accessor functions. 495: * These are _only_ valid on the head of a PG_compound page. 496: */ 497: typedef void compound_page_dtor(struct page *); 498: 499: static inline void set_compound_page_dtor(struct page *page, 500: compound_page_dtor *dtor) 501: { 502: page[1].lru.next = (void *)dtor; 503: } 504: 505: static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 506: { 507: return (compound_page_dtor *)page[1].lru.next; 508: } 509: 510: static inline int compound_order(struct page *page) 511: { 512: if (!PageHead(page)) 513: return 0; 514: return (unsigned long)page[1].lru.prev; 515: } 516: 517: static inline void set_compound_order(struct page *page, unsigned long order) 518: { 519: page[1].lru.prev = (void *)order; 520: } 521: 522: #ifdef CONFIG_MMU 523: /* 524: * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 525: * servicing faults for write access. In the normal case, do always want 526: * pte_mkwrite. But get_user_pages can cause write faults for mappings 527: * that do not have writing enabled, when used by access_process_vm. 528: */ 529: static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 530: { 531: if (likely(vma->vm_flags & VM_WRITE)) 532: pte = pte_mkwrite(pte); 533: return pte; 534: } 535: #endif 536: 537: /* 538: * Multiple processes may "see" the same page. E.g. for untouched 539: * mappings of /dev/null, all processes see the same page full of 540: * zeroes, and text pages of executables and shared libraries have 541: * only one copy in memory, at most, normally. 542: * 543: * For the non-reserved pages, page_count(page) denotes a reference count. 544: * page_count() == 0 means the page is free. page->lru is then used for 545: * freelist management in the buddy allocator. 546: * page_count() > 0 means the page has been allocated. 547: * 548: * Pages are allocated by the slab allocator in order to provide memory 549: * to kmalloc and kmem_cache_alloc. In this case, the management of the 550: * page, and the fields in 'struct page' are the responsibility of mm/slab.c 551: * unless a particular usage is carefully commented. (the responsibility of 552: * freeing the kmalloc memory is the caller's, of course). 553: * 554: * A page may be used by anyone else who does a __get_free_page(). 555: * In this case, page_count still tracks the references, and should only 556: * be used through the normal accessor functions. The top bits of page->flags 557: * and page->virtual store page management information, but all other fields 558: * are unused and could be used privately, carefully. The management of this 559: * page is the responsibility of the one who allocated it, and those who have 560: * subsequently been given references to it. 561: * 562: * The other pages (we may call them "pagecache pages") are completely 563: * managed by the Linux memory manager: I/O, buffers, swapping etc. 564: * The following discussion applies only to them. 565: * 566: * A pagecache page contains an opaque `private' member, which belongs to the 567: * page's address_space. Usually, this is the address of a circular list of 568: * the page's disk buffers. PG_private must be set to tell the VM to call 569: * into the filesystem to release these pages. 570: * 571: * A page may belong to an inode's memory mapping. In this case, page->mapping 572: * is the pointer to the inode, and page->index is the file offset of the page, 573: * in units of PAGE_CACHE_SIZE. 574: * 575: * If pagecache pages are not associated with an inode, they are said to be 576: * anonymous pages. These may become associated with the swapcache, and in that 577: * case PG_swapcache is set, and page->private is an offset into the swapcache. 578: * 579: * In either case (swapcache or inode backed), the pagecache itself holds one 580: * reference to the page. Setting PG_private should also increment the 581: * refcount. The each user mapping also has a reference to the page. 582: * 583: * The pagecache pages are stored in a per-mapping radix tree, which is 584: * rooted at mapping->page_tree, and indexed by offset. 585: * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 586: * lists, we instead now tag pages as dirty/writeback in the radix tree. 587: * 588: * All pagecache pages may be subject to I/O: 589: * - inode pages may need to be read from disk, 590: * - inode pages which have been modified and are MAP_SHARED may need 591: * to be written back to the inode on disk, 592: * - anonymous pages (including MAP_PRIVATE file mappings) which have been 593: * modified may need to be swapped out to swap space and (later) to be read 594: * back into memory. 595: */ 596: 597: /* 598: * The zone field is never updated after free_area_init_core() 599: * sets it, so none of the operations on it need to be atomic. 600: */ 601: 602: /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 603: #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 604: #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 605: #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 606: #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 607: 608: /* 609: * Define the bit shifts to access each section. For non-existent 610: * sections we define the shift as 0; that plus a 0 mask ensures 611: * the compiler will optimise away reference to them. 612: */ 613: #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 614: #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 615: #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 616: #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 617: 618: /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 619: #ifdef NODE_NOT_IN_PAGE_FLAGS 620: #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 621: #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 622: SECTIONS_PGOFF : ZONES_PGOFF) 623: #else 624: #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 625: #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 626: NODES_PGOFF : ZONES_PGOFF) 627: #endif 628: 629: #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 630: 631: #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 632: #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 633: #endif 634: 635: #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 636: #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 637: #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 638: #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1) 639: #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 640: 641: static inline enum zone_type page_zonenum(const struct page *page) 642: { 643: return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 644: } 645: 646: #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 647: #define SECTION_IN_PAGE_FLAGS 648: #endif 649: 650: /* 651: * The identification function is mainly used by the buddy allocator for 652: * determining if two pages could be buddies. We are not really identifying 653: * the zone since we could be using the section number id if we do not have 654: * node id available in page flags. 655: * We only guarantee that it will return the same value for two combinable 656: * pages in a zone. 657: */ 658: static inline int page_zone_id(struct page *page) 659: { 660: return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 661: } 662: 663: static inline int zone_to_nid(struct zone *zone) 664: { 665: #ifdef CONFIG_NUMA 666: return zone->node; 667: #else 668: return 0; 669: #endif 670: } 671: 672: #ifdef NODE_NOT_IN_PAGE_FLAGS 673: extern int page_to_nid(const struct page *page); 674: #else 675: static inline int page_to_nid(const struct page *page) 676: { 677: return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 678: } 679: #endif 680: 681: #ifdef CONFIG_NUMA_BALANCING 682: static inline int cpu_pid_to_cpupid(int cpu, int pid) 683: { 684: return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 685: } 686: 687: static inline int cpupid_to_pid(int cpupid) 688: { 689: return cpupid & LAST__PID_MASK; 690: } 691: 692: static inline int cpupid_to_cpu(int cpupid) 693: { 694: return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 695: } 696: 697: static inline int cpupid_to_nid(int cpupid) 698: { 699: return cpu_to_node(cpupid_to_cpu(cpupid)); 700: } 701: 702: static inline bool cpupid_pid_unset(int cpupid) 703: { 704: return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 705: } 706: 707: static inline bool cpupid_cpu_unset(int cpupid) 708: { 709: return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 710: } 711: 712: static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 713: { 714: return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 715: } 716: 717: #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 718: #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 719: static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 720: { 721: return xchg(&page->_last_cpupid, cpupid); 722: } 723: 724: static inline int page_cpupid_last(struct page *page) 725: { 726: return page->_last_cpupid; 727: } 728: static inline void page_cpupid_reset_last(struct page *page) 729: { 730: page->_last_cpupid = -1; 731: } 732: #else 733: static inline int page_cpupid_last(struct page *page) 734: { 735: return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 736: } 737: 738: extern int page_cpupid_xchg_last(struct page *page, int cpupid); 739: 740: static inline void page_cpupid_reset_last(struct page *page) 741: { 742: int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 743: 744: page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 745: page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 746: } 747: #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 748: #else /* !CONFIG_NUMA_BALANCING */ 749: static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 750: { 751: return page_to_nid(page); /* XXX */ 752: } 753: 754: static inline int page_cpupid_last(struct page *page) 755: { 756: return page_to_nid(page); /* XXX */ 757: } 758: 759: static inline int cpupid_to_nid(int cpupid) 760: { 761: return -1; 762: } 763: 764: static inline int cpupid_to_pid(int cpupid) 765: { 766: return -1; 767: } 768: 769: static inline int cpupid_to_cpu(int cpupid) 770: { 771: return -1; 772: } 773: 774: static inline int cpu_pid_to_cpupid(int nid, int pid) 775: { 776: return -1; 777: } 778: 779: static inline bool cpupid_pid_unset(int cpupid) 780: { 781: return 1; 782: } 783: 784: static inline void page_cpupid_reset_last(struct page *page) 785: { 786: } 787: 788: static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 789: { 790: return false; 791: } 792: #endif /* CONFIG_NUMA_BALANCING */ 793: 794: static inline struct zone *page_zone(const struct page *page) 795: { 796: return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 797: } 798: 799: #ifdef SECTION_IN_PAGE_FLAGS 800: static inline void set_page_section(struct page *page, unsigned long section) 801: { 802: page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 803: page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 804: } 805: 806: static inline unsigned long page_to_section(const struct page *page) 807: { 808: return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 809: } 810: #endif 811: 812: static inline void set_page_zone(struct page *page, enum zone_type zone) 813: { 814: page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 815: page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 816: } 817: 818: static inline void set_page_node(struct page *page, unsigned long node) 819: { 820: page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 821: page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 822: } 823: 824: static inline void set_page_links(struct page *page, enum zone_type zone, 825: unsigned long node, unsigned long pfn) 826: { 827: set_page_zone(page, zone); 828: set_page_node(page, node); 829: #ifdef SECTION_IN_PAGE_FLAGS 830: set_page_section(page, pfn_to_section_nr(pfn)); 831: #endif 832: } 833: 834: /* 835: * Some inline functions in vmstat.h depend on page_zone() 836: */ 837: #include <linux/vmstat.h> 838: 839: static __always_inline void *lowmem_page_address(const struct page *page) 840: { 841: return __va(PFN_PHYS(page_to_pfn(page))); 842: } 843: 844: #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 845: #define HASHED_PAGE_VIRTUAL 846: #endif 847: 848: #if defined(WANT_PAGE_VIRTUAL) 849: #define page_address(page) ((page)->virtual) 850: #define set_page_address(page, address) \ 851: do { \ 852: (page)->virtual = (address); \ 853: } while(0) 854: #define page_address_init() do { } while(0) 855: #endif 856: 857: #if defined(HASHED_PAGE_VIRTUAL) 858: void *page_address(const struct page *page); 859: void set_page_address(struct page *page, void *virtual); 860: void page_address_init(void); 861: #endif 862: 863: #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 864: #define page_address(page) lowmem_page_address(page) 865: #define set_page_address(page, address) do { } while(0) 866: #define page_address_init() do { } while(0) 867: #endif 868: 869: /* 870: * On an anonymous page mapped into a user virtual memory area, 871: * page->mapping points to its anon_vma, not to a struct address_space; 872: * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 873: * 874: * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 875: * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 876: * and then page->mapping points, not to an anon_vma, but to a private 877: * structure which KSM associates with that merged page. See ksm.h. 878: * 879: * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 880: * 881: * Please note that, confusingly, "page_mapping" refers to the inode 882: * address_space which maps the page from disk; whereas "page_mapped" 883: * refers to user virtual address space into which the page is mapped. 884: */ 885: #define PAGE_MAPPING_ANON 1 886: #define PAGE_MAPPING_KSM 2 887: #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 888: 889: extern struct address_space *page_mapping(struct page *page); 890: 891: /* Neutral page->mapping pointer to address_space or anon_vma or other */ 892: static inline void *page_rmapping(struct page *page) 893: { 894: return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 895: } 896: 897: extern struct address_space *__page_file_mapping(struct page *); 898: 899: static inline 900: struct address_space *page_file_mapping(struct page *page) 901: { 902: if (unlikely(PageSwapCache(page))) 903: return __page_file_mapping(page); 904: 905: return page->mapping; 906: } 907: 908: static inline int PageAnon(struct page *page) 909: { 910: return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 911: } 912: 913: /* 914: * Return the pagecache index of the passed page. Regular pagecache pages 915: * use ->index whereas swapcache pages use ->private 916: */ 917: static inline pgoff_t page_index(struct page *page) 918: { 919: if (unlikely(PageSwapCache(page))) 920: return page_private(page); 921: return page->index; 922: } 923: 924: extern pgoff_t __page_file_index(struct page *page); 925: 926: /* 927: * Return the file index of the page. Regular pagecache pages use ->index 928: * whereas swapcache pages use swp_offset(->private) 929: */ 930: static inline pgoff_t page_file_index(struct page *page) 931: { 932: if (unlikely(PageSwapCache(page))) 933: return __page_file_index(page); 934: 935: return page->index; 936: } 937: 938: /* 939: * Return true if this page is mapped into pagetables. 940: */ 941: static inline int page_mapped(struct page *page) 942: { 943: return atomic_read(&(page)->_mapcount) >= 0; 944: } 945: 946: /* 947: * Different kinds of faults, as returned by handle_mm_fault(). 948: * Used to decide whether a process gets delivered SIGBUS or 949: * just gets major/minor fault counters bumped up. 950: */ 951: 952: #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 953: 954: #define VM_FAULT_OOM 0x0001 955: #define VM_FAULT_SIGBUS 0x0002 956: #define VM_FAULT_MAJOR 0x0004 957: #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 958: #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 959: #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 960: 961: #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 962: #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 963: #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 964: #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 965: 966: #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 967: 968: #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 969: VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 970: 971: /* Encode hstate index for a hwpoisoned large page */ 972: #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 973: #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 974: 975: /* 976: * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 977: */ 978: extern void pagefault_out_of_memory(void); 979: 980: #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 981: 982: /* 983: * Flags passed to show_mem() and show_free_areas() to suppress output in 984: * various contexts. 985: */ 986: #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 987: #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */ 988: 989: extern void show_free_areas(unsigned int flags); 990: extern bool skip_free_areas_node(unsigned int flags, int nid); 991: 992: int shmem_zero_setup(struct vm_area_struct *); 993: 994: extern int can_do_mlock(void); 995: extern int user_shm_lock(size_t, struct user_struct *); 996: extern void user_shm_unlock(size_t, struct user_struct *); 997: 998: /* 999: * Parameter block passed down to zap_pte_range in exceptional cases. 1000: */ 1001: struct zap_details { 1002: struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1003: struct address_space *check_mapping; /* Check page->mapping if set */ 1004: pgoff_t first_index; /* Lowest page->index to unmap */ 1005: pgoff_t last_index; /* Highest page->index to unmap */ 1006: }; 1007: 1008: struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1009: pte_t pte); 1010: 1011: int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1012: unsigned long size); 1013: void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1014: unsigned long size, struct zap_details *); 1015: void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1016: unsigned long start, unsigned long end); 1017: 1018: /** 1019: * mm_walk - callbacks for walk_page_range 1020: * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1021: * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1022: * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1023: * this handler is required to be able to handle 1024: * pmd_trans_huge() pmds. They may simply choose to 1025: * split_huge_page() instead of handling it explicitly. 1026: * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1027: * @pte_hole: if set, called for each hole at all levels 1028: * @hugetlb_entry: if set, called for each hugetlb entry 1029: * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1030: * is used. 1031: * 1032: * (see walk_page_range for more details) 1033: */ 1034: struct mm_walk { 1035: int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1036: unsigned long next, struct mm_walk *walk); 1037: int (*pud_entry)(pud_t *pud, unsigned long addr, 1038: unsigned long next, struct mm_walk *walk); 1039: int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1040: unsigned long next, struct mm_walk *walk); 1041: int (*pte_entry)(pte_t *pte, unsigned long addr, 1042: unsigned long next, struct mm_walk *walk); 1043: int (*pte_hole)(unsigned long addr, unsigned long next, 1044: struct mm_walk *walk); 1045: int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1046: unsigned long addr, unsigned long next, 1047: struct mm_walk *walk); 1048: struct mm_struct *mm; 1049: void *private; 1050: }; 1051: 1052: int walk_page_range(unsigned long addr, unsigned long end, 1053: struct mm_walk *walk); 1054: void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1055: unsigned long end, unsigned long floor, unsigned long ceiling); 1056: int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1057: struct vm_area_struct *vma); 1058: void unmap_mapping_range(struct address_space *mapping, 1059: loff_t const holebegin, loff_t const holelen, int even_cows); 1060: int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1061: unsigned long *pfn); 1062: int follow_phys(struct vm_area_struct *vma, unsigned long address, 1063: unsigned int flags, unsigned long *prot, resource_size_t *phys); 1064: int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1065: void *buf, int len, int write); 1066: 1067: static inline void unmap_shared_mapping_range(struct address_space *mapping, 1068: loff_t const holebegin, loff_t const holelen) 1069: { 1070: unmap_mapping_range(mapping, holebegin, holelen, 0); 1071: } 1072: 1073: extern void truncate_pagecache(struct inode *inode, loff_t new); 1074: extern void truncate_setsize(struct inode *inode, loff_t newsize); 1075: void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1076: int truncate_inode_page(struct address_space *mapping, struct page *page); 1077: int generic_error_remove_page(struct address_space *mapping, struct page *page); 1078: int invalidate_inode_page(struct page *page); 1079: 1080: #ifdef CONFIG_MMU 1081: extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1082: unsigned long address, unsigned int flags); 1083: extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1084: unsigned long address, unsigned int fault_flags); 1085: #else 1086: static inline int handle_mm_fault(struct mm_struct *mm, 1087: struct vm_area_struct *vma, unsigned long address, 1088: unsigned int flags) 1089: { 1090: /* should never happen if there's no MMU */ 1091: BUG(); 1092: return VM_FAULT_SIGBUS; 1093: } 1094: static inline int fixup_user_fault(struct task_struct *tsk, 1095: struct mm_struct *mm, unsigned long address, 1096: unsigned int fault_flags) 1097: { 1098: /* should never happen if there's no MMU */ 1099: BUG(); 1100: return -EFAULT; 1101: } 1102: #endif 1103: 1104: extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1105: extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1106: void *buf, int len, int write); 1107: 1108: long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1109: unsigned long start, unsigned long nr_pages, 1110: unsigned int foll_flags, struct page **pages, 1111: struct vm_area_struct **vmas, int *nonblocking); 1112: long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1113: unsigned long start, unsigned long nr_pages, 1114: int write, int force, struct page **pages, 1115: struct vm_area_struct **vmas); 1116: int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1117: struct page **pages); 1118: struct kvec; 1119: int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1120: struct page **pages); 1121: int get_kernel_page(unsigned long start, int write, struct page **pages); 1122: struct page *get_dump_page(unsigned long addr); 1123: 1124: extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1125: extern void do_invalidatepage(struct page *page, unsigned int offset, 1126: unsigned int length); 1127: 1128: int __set_page_dirty_nobuffers(struct page *page); 1129: int __set_page_dirty_no_writeback(struct page *page); 1130: int redirty_page_for_writepage(struct writeback_control *wbc, 1131: struct page *page); 1132: void account_page_dirtied(struct page *page, struct address_space *mapping); 1133: void account_page_writeback(struct page *page); 1134: int set_page_dirty(struct page *page); 1135: int set_page_dirty_lock(struct page *page); 1136: int clear_page_dirty_for_io(struct page *page); 1137: 1138: /* Is the vma a continuation of the stack vma above it? */ 1139: static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1140: { 1141: return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1142: } 1143: 1144: static inline int stack_guard_page_start(struct vm_area_struct *vma, 1145: unsigned long addr) 1146: { 1147: return (vma->vm_flags & VM_GROWSDOWN) && 1148: (vma->vm_start == addr) && 1149: !vma_growsdown(vma->vm_prev, addr); 1150: } 1151: 1152: /* Is the vma a continuation of the stack vma below it? */ 1153: static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1154: { 1155: return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1156: } 1157: 1158: static inline int stack_guard_page_end(struct vm_area_struct *vma, 1159: unsigned long addr) 1160: { 1161: return (vma->vm_flags & VM_GROWSUP) && 1162: (vma->vm_end == addr) && 1163: !vma_growsup(vma->vm_next, addr); 1164: } 1165: 1166: extern pid_t 1167: vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1168: 1169: extern unsigned long move_page_tables(struct vm_area_struct *vma, 1170: unsigned long old_addr, struct vm_area_struct *new_vma, 1171: unsigned long new_addr, unsigned long len, 1172: bool need_rmap_locks); 1173: extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1174: unsigned long end, pgprot_t newprot, 1175: int dirty_accountable, int prot_numa); 1176: extern int mprotect_fixup(struct vm_area_struct *vma, 1177: struct vm_area_struct **pprev, unsigned long start, 1178: unsigned long end, unsigned long newflags); 1179: 1180: /* 1181: * doesn't attempt to fault and will return short. 1182: */ 1183: int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1184: struct page **pages); 1185: /* 1186: * per-process(per-mm_struct) statistics. 1187: */ 1188: static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1189: { 1190: long val = atomic_long_read(&mm->rss_stat.count[member]); 1191: 1192: #ifdef SPLIT_RSS_COUNTING 1193: /* 1194: * counter is updated in asynchronous manner and may go to minus. 1195: * But it's never be expected number for users. 1196: */ 1197: if (val < 0) 1198: val = 0; 1199: #endif 1200: return (unsigned long)val; 1201: } 1202: 1203: static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1204: { 1205: atomic_long_add(value, &mm->rss_stat.count[member]); 1206: } 1207: 1208: static inline void inc_mm_counter(struct mm_struct *mm, int member) 1209: { 1210: atomic_long_inc(&mm->rss_stat.count[member]); 1211: } 1212: 1213: static inline void dec_mm_counter(struct mm_struct *mm, int member) 1214: { 1215: atomic_long_dec(&mm->rss_stat.count[member]); 1216: } 1217: 1218: static inline unsigned long get_mm_rss(struct mm_struct *mm) 1219: { 1220: return get_mm_counter(mm, MM_FILEPAGES) + 1221: get_mm_counter(mm, MM_ANONPAGES); 1222: } 1223: 1224: static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1225: { 1226: return max(mm->hiwater_rss, get_mm_rss(mm)); 1227: } 1228: 1229: static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1230: { 1231: return max(mm->hiwater_vm, mm->total_vm); 1232: } 1233: 1234: static inline void update_hiwater_rss(struct mm_struct *mm) 1235: { 1236: unsigned long _rss = get_mm_rss(mm); 1237: 1238: if ((mm)->hiwater_rss < _rss) 1239: (mm)->hiwater_rss = _rss; 1240: } 1241: 1242: static inline void update_hiwater_vm(struct mm_struct *mm) 1243: { 1244: if (mm->hiwater_vm < mm->total_vm) 1245: mm->hiwater_vm = mm->total_vm; 1246: } 1247: 1248: static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1249: struct mm_struct *mm) 1250: { 1251: unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1252: 1253: if (*maxrss < hiwater_rss) 1254: *maxrss = hiwater_rss; 1255: } 1256: 1257: #if defined(SPLIT_RSS_COUNTING) 1258: void sync_mm_rss(struct mm_struct *mm); 1259: #else 1260: static inline void sync_mm_rss(struct mm_struct *mm) 1261: { 1262: } 1263: #endif 1264: 1265: int vma_wants_writenotify(struct vm_area_struct *vma); 1266: 1267: extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1268: spinlock_t **ptl); 1269: static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1270: spinlock_t **ptl) 1271: { 1272: pte_t *ptep; 1273: __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1274: return ptep; 1275: } 1276: 1277: #ifdef __PAGETABLE_PUD_FOLDED 1278: static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1279: unsigned long address) 1280: { 1281: return 0; 1282: } 1283: #else 1284: int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1285: #endif 1286: 1287: #ifdef __PAGETABLE_PMD_FOLDED 1288: static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1289: unsigned long address) 1290: { 1291: return 0; 1292: } 1293: #else 1294: int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1295: #endif 1296: 1297: int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1298: pmd_t *pmd, unsigned long address); 1299: int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1300: 1301: /* 1302: * The following ifdef needed to get the 4level-fixup.h header to work. 1303: * Remove it when 4level-fixup.h has been removed. 1304: */ 1305: #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1306: static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1307: { 1308: return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1309: NULL: pud_offset(pgd, address); 1310: } 1311: 1312: static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1313: { 1314: return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1315: NULL: pmd_offset(pud, address); 1316: } 1317: #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1318: 1319: #if USE_SPLIT_PTE_PTLOCKS 1320: #if ALLOC_SPLIT_PTLOCKS 1321: extern bool ptlock_alloc(struct page *page); 1322: extern void ptlock_free(struct page *page); 1323: 1324: static inline spinlock_t *ptlock_ptr(struct page *page) 1325: { 1326: return page->ptl; 1327: } 1328: #else /* ALLOC_SPLIT_PTLOCKS */ 1329: static inline bool ptlock_alloc(struct page *page) 1330: { 1331: return true; 1332: } 1333: 1334: static inline void ptlock_free(struct page *page) 1335: { 1336: } 1337: 1338: static inline spinlock_t *ptlock_ptr(struct page *page) 1339: { 1340: return &page->ptl; 1341: } 1342: #endif /* ALLOC_SPLIT_PTLOCKS */ 1343: 1344: static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1345: { 1346: return ptlock_ptr(pmd_page(*pmd)); 1347: } 1348: 1349: static inline bool ptlock_init(struct page *page) 1350: { 1351: /* 1352: * prep_new_page() initialize page->private (and therefore page->ptl) 1353: * with 0. Make sure nobody took it in use in between. 1354: * 1355: * It can happen if arch try to use slab for page table allocation: 1356: * slab code uses page->slab_cache and page->first_page (for tail 1357: * pages), which share storage with page->ptl. 1358: */ 1359: VM_BUG_ON(*(unsigned long *)&page->ptl); 1360: if (!ptlock_alloc(page)) 1361: return false; 1362: spin_lock_init(ptlock_ptr(page)); 1363: return true; 1364: } 1365: 1366: /* Reset page->mapping so free_pages_check won't complain. */ 1367: static inline void pte_lock_deinit(struct page *page) 1368: { 1369: page->mapping = NULL; 1370: ptlock_free(page); 1371: } 1372: 1373: #else /* !USE_SPLIT_PTE_PTLOCKS */ 1374: /* 1375: * We use mm->page_table_lock to guard all pagetable pages of the mm. 1376: */ 1377: static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1378: { 1379: return &mm->page_table_lock; 1380: } 1381: static inline bool ptlock_init(struct page *page) { return true; } 1382: static inline void pte_lock_deinit(struct page *page) {} 1383: #endif /* USE_SPLIT_PTE_PTLOCKS */ 1384: 1385: static inline bool pgtable_page_ctor(struct page *page) 1386: { 1387: inc_zone_page_state(page, NR_PAGETABLE); 1388: return ptlock_init(page); 1389: } 1390: 1391: static inline void pgtable_page_dtor(struct page *page) 1392: { 1393: pte_lock_deinit(page); 1394: dec_zone_page_state(page, NR_PAGETABLE); 1395: } 1396: 1397: #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1398: ({ \ 1399: spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1400: pte_t *__pte = pte_offset_map(pmd, address); \ 1401: *(ptlp) = __ptl; \ 1402: spin_lock(__ptl); \ 1403: __pte; \ 1404: }) 1405: 1406: #define pte_unmap_unlock(pte, ptl) do { \ 1407: spin_unlock(ptl); \ 1408: pte_unmap(pte); \ 1409: } while (0) 1410: 1411: #define pte_alloc_map(mm, vma, pmd, address) \ 1412: ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1413: pmd, address))? \ 1414: NULL: pte_offset_map(pmd, address)) 1415: 1416: #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1417: ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1418: pmd, address))? \ 1419: NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1420: 1421: #define pte_alloc_kernel(pmd, address) \ 1422: ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1423: NULL: pte_offset_kernel(pmd, address)) 1424: 1425: #if USE_SPLIT_PMD_PTLOCKS 1426: 1427: static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1428: { 1429: return ptlock_ptr(virt_to_page(pmd)); 1430: } 1431: 1432: static inline bool pgtable_pmd_page_ctor(struct page *page) 1433: { 1434: #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1435: page->pmd_huge_pte = NULL; 1436: #endif 1437: return ptlock_init(page); 1438: } 1439: 1440: static inline void pgtable_pmd_page_dtor(struct page *page) 1441: { 1442: #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1443: VM_BUG_ON(page->pmd_huge_pte); 1444: #endif 1445: ptlock_free(page); 1446: } 1447: 1448: #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte) 1449: 1450: #else 1451: 1452: static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1453: { 1454: return &mm->page_table_lock; 1455: } 1456: 1457: static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1458: static inline void pgtable_pmd_page_dtor(struct page *page) {} 1459: 1460: #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1461: 1462: #endif 1463: 1464: static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1465: { 1466: spinlock_t *ptl = pmd_lockptr(mm, pmd); 1467: spin_lock(ptl); 1468: return ptl; 1469: } 1470: 1471: extern void free_area_init(unsigned long * zones_size); 1472: extern void free_area_init_node(int nid, unsigned long * zones_size, 1473: unsigned long zone_start_pfn, unsigned long *zholes_size); 1474: extern void free_initmem(void); 1475: 1476: /* 1477: * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1478: * into the buddy system. The freed pages will be poisoned with pattern 1479: * "poison" if it's within range [0, UCHAR_MAX]. 1480: * Return pages freed into the buddy system. 1481: */ 1482: extern unsigned long free_reserved_area(void *start, void *end, 1483: int poison, char *s); 1484: 1485: #ifdef CONFIG_HIGHMEM 1486: /* 1487: * Free a highmem page into the buddy system, adjusting totalhigh_pages 1488: * and totalram_pages. 1489: */ 1490: extern void free_highmem_page(struct page *page); 1491: #endif 1492: 1493: extern void adjust_managed_page_count(struct page *page, long count); 1494: extern void mem_init_print_info(const char *str); 1495: 1496: /* Free the reserved page into the buddy system, so it gets managed. */ 1497: static inline void __free_reserved_page(struct page *page) 1498: { 1499: ClearPageReserved(page); 1500: init_page_count(page); 1501: __free_page(page); 1502: } 1503: 1504: static inline void free_reserved_page(struct page *page) 1505: { 1506: __free_reserved_page(page); 1507: adjust_managed_page_count(page, 1); 1508: } 1509: 1510: static inline void mark_page_reserved(struct page *page) 1511: { 1512: SetPageReserved(page); 1513: adjust_managed_page_count(page, -1); 1514: } 1515: 1516: /* 1517: * Default method to free all the __init memory into the buddy system. 1518: * The freed pages will be poisoned with pattern "poison" if it's within 1519: * range [0, UCHAR_MAX]. 1520: * Return pages freed into the buddy system. 1521: */ 1522: static inline unsigned long free_initmem_default(int poison) 1523: { 1524: extern char __init_begin[], __init_end[]; 1525: 1526: return free_reserved_area(&__init_begin, &__init_end, 1527: poison, "unused kernel"); 1528: } 1529: 1530: static inline unsigned long get_num_physpages(void) 1531: { 1532: int nid; 1533: unsigned long phys_pages = 0; 1534: 1535: for_each_online_node(nid) 1536: phys_pages += node_present_pages(nid); 1537: 1538: return phys_pages; 1539: } 1540: 1541: #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1542: /* 1543: * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1544: * zones, allocate the backing mem_map and account for memory holes in a more 1545: * architecture independent manner. This is a substitute for creating the 1546: * zone_sizes[] and zholes_size[] arrays and passing them to 1547: * free_area_init_node() 1548: * 1549: * An architecture is expected to register range of page frames backed by 1550: * physical memory with memblock_add[_node]() before calling 1551: * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1552: * usage, an architecture is expected to do something like 1553: * 1554: * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1555: * max_highmem_pfn}; 1556: * for_each_valid_physical_page_range() 1557: * memblock_add_node(base, size, nid) 1558: * free_area_init_nodes(max_zone_pfns); 1559: * 1560: * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1561: * registered physical page range. Similarly 1562: * sparse_memory_present_with_active_regions() calls memory_present() for 1563: * each range when SPARSEMEM is enabled. 1564: * 1565: * See mm/page_alloc.c for more information on each function exposed by 1566: * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1567: */ 1568: extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1569: unsigned long node_map_pfn_alignment(void); 1570: unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1571: unsigned long end_pfn); 1572: extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1573: unsigned long end_pfn); 1574: extern void get_pfn_range_for_nid(unsigned int nid, 1575: unsigned long *start_pfn, unsigned long *end_pfn); 1576: extern unsigned long find_min_pfn_with_active_regions(void); 1577: extern void free_bootmem_with_active_regions(int nid, 1578: unsigned long max_low_pfn); 1579: extern void sparse_memory_present_with_active_regions(int nid); 1580: 1581: #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1582: 1583: #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1584: !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1585: static inline int __early_pfn_to_nid(unsigned long pfn) 1586: { 1587: return 0; 1588: } 1589: #else 1590: /* please see mm/page_alloc.c */ 1591: extern int __meminit early_pfn_to_nid(unsigned long pfn); 1592: #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1593: /* there is a per-arch backend function. */ 1594: extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1595: #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1596: #endif 1597: 1598: extern void set_dma_reserve(unsigned long new_dma_reserve); 1599: extern void memmap_init_zone(unsigned long, int, unsigned long, 1600: unsigned long, enum memmap_context); 1601: extern void setup_per_zone_wmarks(void); 1602: extern int __meminit init_per_zone_wmark_min(void); 1603: extern void mem_init(void); 1604: extern void __init mmap_init(void); 1605: extern void show_mem(unsigned int flags); 1606: extern void si_meminfo(struct sysinfo * val); 1607: extern void si_meminfo_node(struct sysinfo *val, int nid); 1608: 1609: extern __printf(3, 4) 1610: void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1611: 1612: extern void setup_per_cpu_pageset(void); 1613: 1614: extern void zone_pcp_update(struct zone *zone); 1615: extern void zone_pcp_reset(struct zone *zone); 1616: 1617: /* page_alloc.c */ 1618: extern int min_free_kbytes; 1619: 1620: /* nommu.c */ 1621: extern atomic_long_t mmap_pages_allocated; 1622: extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1623: 1624: /* interval_tree.c */ 1625: void vma_interval_tree_insert(struct vm_area_struct *node, 1626: struct rb_root *root); 1627: void vma_interval_tree_insert_after(struct vm_area_struct *node, 1628: struct vm_area_struct *prev, 1629: struct rb_root *root); 1630: void vma_interval_tree_remove(struct vm_area_struct *node, 1631: struct rb_root *root); 1632: struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1633: unsigned long start, unsigned long last); 1634: struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1635: unsigned long start, unsigned long last); 1636: 1637: #define vma_interval_tree_foreach(vma, root, start, last) \ 1638: for (vma = vma_interval_tree_iter_first(root, start, last); \ 1639: vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1640: 1641: static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1642: struct list_head *list) 1643: { 1644: list_add_tail(&vma->shared.nonlinear, list); 1645: } 1646: 1647: void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1648: struct rb_root *root); 1649: void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1650: struct rb_root *root); 1651: struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1652: struct rb_root *root, unsigned long start, unsigned long last); 1653: struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1654: struct anon_vma_chain *node, unsigned long start, unsigned long last); 1655: #ifdef CONFIG_DEBUG_VM_RB 1656: void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1657: #endif 1658: 1659: #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1660: for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1661: avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1662: 1663: /* mmap.c */ 1664: extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1665: extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1666: unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1667: extern struct vm_area_struct *vma_merge(struct mm_struct *, 1668: struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1669: unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1670: struct mempolicy *); 1671: extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1672: extern int split_vma(struct mm_struct *, 1673: struct vm_area_struct *, unsigned long addr, int new_below); 1674: extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1675: extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1676: struct rb_node **, struct rb_node *); 1677: extern void unlink_file_vma(struct vm_area_struct *); 1678: extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1679: unsigned long addr, unsigned long len, pgoff_t pgoff, 1680: bool *need_rmap_locks); 1681: extern void exit_mmap(struct mm_struct *); 1682: 1683: extern int mm_take_all_locks(struct mm_struct *mm); 1684: extern void mm_drop_all_locks(struct mm_struct *mm); 1685: 1686: extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1687: extern struct file *get_mm_exe_file(struct mm_struct *mm); 1688: 1689: extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1690: extern int install_special_mapping(struct mm_struct *mm, 1691: unsigned long addr, unsigned long len, 1692: unsigned long flags, struct page **pages); 1693: 1694: extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1695: 1696: extern unsigned long mmap_region(struct file *file, unsigned long addr, 1697: unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1698: extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1699: unsigned long len, unsigned long prot, unsigned long flags, 1700: unsigned long pgoff, unsigned long *populate); 1701: extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1702: 1703: #ifdef CONFIG_MMU 1704: extern int __mm_populate(unsigned long addr, unsigned long len, 1705: int ignore_errors); 1706: static inline void mm_populate(unsigned long addr, unsigned long len) 1707: { 1708: /* Ignore errors */ 1709: (void) __mm_populate(addr, len, 1); 1710: } 1711: #else 1712: static inline void mm_populate(unsigned long addr, unsigned long len) {} 1713: #endif 1714: 1715: /* These take the mm semaphore themselves */ 1716: extern unsigned long vm_brk(unsigned long, unsigned long); 1717: extern int vm_munmap(unsigned long, size_t); 1718: extern unsigned long vm_mmap(struct file *, unsigned long, 1719: unsigned long, unsigned long, 1720: unsigned long, unsigned long); 1721: 1722: struct vm_unmapped_area_info { 1723: #define VM_UNMAPPED_AREA_TOPDOWN 1 1724: unsigned long flags; 1725: unsigned long length; 1726: unsigned long low_limit; 1727: unsigned long high_limit; 1728: unsigned long align_mask; 1729: unsigned long align_offset; 1730: }; 1731: 1732: extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1733: extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1734: 1735: /* 1736: * Search for an unmapped address range. 1737: * 1738: * We are looking for a range that: 1739: * - does not intersect with any VMA; 1740: * - is contained within the [low_limit, high_limit) interval; 1741: * - is at least the desired size. 1742: * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1743: */ 1744: static inline unsigned long 1745: vm_unmapped_area(struct vm_unmapped_area_info *info) 1746: { 1747: if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1748: return unmapped_area(info); 1749: else 1750: return unmapped_area_topdown(info); 1751: } 1752: 1753: /* truncate.c */ 1754: extern void truncate_inode_pages(struct address_space *, loff_t); 1755: extern void truncate_inode_pages_range(struct address_space *, 1756: loff_t lstart, loff_t lend); 1757: 1758: /* generic vm_area_ops exported for stackable file systems */ 1759: extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1760: extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1761: 1762: /* mm/page-writeback.c */ 1763: int write_one_page(struct page *page, int wait); 1764: void task_dirty_inc(struct task_struct *tsk); 1765: 1766: /* readahead.c */ 1767: #define VM_MAX_READAHEAD 128 /* kbytes */ 1768: #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1769: 1770: int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1771: pgoff_t offset, unsigned long nr_to_read); 1772: 1773: void page_cache_sync_readahead(struct address_space *mapping, 1774: struct file_ra_state *ra, 1775: struct file *filp, 1776: pgoff_t offset, 1777: unsigned long size); 1778: 1779: void page_cache_async_readahead(struct address_space *mapping, 1780: struct file_ra_state *ra, 1781: struct file *filp, 1782: struct page *pg, 1783: pgoff_t offset, 1784: unsigned long size); 1785: 1786: unsigned long max_sane_readahead(unsigned long nr); 1787: unsigned long ra_submit(struct file_ra_state *ra, 1788: struct address_space *mapping, 1789: struct file *filp); 1790: 1791: /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1792: extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1793: 1794: /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1795: extern int expand_downwards(struct vm_area_struct *vma, 1796: unsigned long address); 1797: #if VM_GROWSUP 1798: extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1799: #else 1800: #define expand_upwards(vma, address) do { } while (0) 1801: #endif 1802: 1803: /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1804: extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1805: extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1806: struct vm_area_struct **pprev); 1807: 1808: /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1809: NULL if none. Assume start_addr < end_addr. */ 1810: static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1811: { 1812: struct vm_area_struct * vma = find_vma(mm,start_addr); 1813: 1814: if (vma && end_addr <= vma->vm_start) 1815: vma = NULL; 1816: return vma; 1817: } 1818: 1819: static inline unsigned long vma_pages(struct vm_area_struct *vma) 1820: { 1821: return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1822: } 1823: 1824: /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1825: static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1826: unsigned long vm_start, unsigned long vm_end) 1827: { 1828: struct vm_area_struct *vma = find_vma(mm, vm_start); 1829: 1830: if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1831: vma = NULL; 1832: 1833: return vma; 1834: } 1835: 1836: #ifdef CONFIG_MMU 1837: pgprot_t vm_get_page_prot(unsigned long vm_flags); 1838: #else 1839: static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1840: { 1841: return __pgprot(0); 1842: } 1843: #endif 1844: 1845: #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1846: unsigned long change_prot_numa(struct vm_area_struct *vma, 1847: unsigned long start, unsigned long end); 1848: #endif 1849: 1850: struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1851: int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1852: unsigned long pfn, unsigned long size, pgprot_t); 1853: int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1854: int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1855: unsigned long pfn); 1856: int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1857: unsigned long pfn); 1858: int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1859: 1860: 1861: struct page *follow_page_mask(struct vm_area_struct *vma, 1862: unsigned long address, unsigned int foll_flags, 1863: unsigned int *page_mask); 1864: 1865: static inline struct page *follow_page(struct vm_area_struct *vma, 1866: unsigned long address, unsigned int foll_flags) 1867: { 1868: unsigned int unused_page_mask; 1869: return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1870: } 1871: 1872: #define FOLL_WRITE 0x01 /* check pte is writable */ 1873: #define FOLL_TOUCH 0x02 /* mark page accessed */ 1874: #define FOLL_GET 0x04 /* do get_page on page */ 1875: #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1876: #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1877: #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1878: * and return without waiting upon it */ 1879: #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1880: #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1881: #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1882: #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1883: #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1884: 1885: typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1886: void *data); 1887: extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1888: unsigned long size, pte_fn_t fn, void *data); 1889: 1890: #ifdef CONFIG_PROC_FS 1891: void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1892: #else 1893: static inline void vm_stat_account(struct mm_struct *mm, 1894: unsigned long flags, struct file *file, long pages) 1895: { 1896: mm->total_vm += pages; 1897: } 1898: #endif /* CONFIG_PROC_FS */ 1899: 1900: #ifdef CONFIG_DEBUG_PAGEALLOC 1901: extern void kernel_map_pages(struct page *page, int numpages, int enable); 1902: #ifdef CONFIG_HIBERNATION 1903: extern bool kernel_page_present(struct page *page); 1904: #endif /* CONFIG_HIBERNATION */ 1905: #else 1906: static inline void 1907: kernel_map_pages(struct page *page, int numpages, int enable) {} 1908: #ifdef CONFIG_HIBERNATION 1909: static inline bool kernel_page_present(struct page *page) { return true; } 1910: #endif /* CONFIG_HIBERNATION */ 1911: #endif 1912: 1913: extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1914: #ifdef __HAVE_ARCH_GATE_AREA 1915: int in_gate_area_no_mm(unsigned long addr); 1916: int in_gate_area(struct mm_struct *mm, unsigned long addr); 1917: #else 1918: int in_gate_area_no_mm(unsigned long addr); 1919: #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1920: #endif /* __HAVE_ARCH_GATE_AREA */ 1921: 1922: #ifdef CONFIG_SYSCTL 1923: extern int sysctl_drop_caches; 1924: int drop_caches_sysctl_handler(struct ctl_table *, int, 1925: void __user *, size_t *, loff_t *); 1926: #endif 1927: 1928: unsigned long shrink_slab(struct shrink_control *shrink, 1929: unsigned long nr_pages_scanned, 1930: unsigned long lru_pages); 1931: 1932: #ifndef CONFIG_MMU 1933: #define randomize_va_space 0 1934: #else 1935: extern int randomize_va_space; 1936: #endif 1937: 1938: const char * arch_vma_name(struct vm_area_struct *vma); 1939: void print_vma_addr(char *prefix, unsigned long rip); 1940: 1941: void sparse_mem_maps_populate_node(struct page **map_map, 1942: unsigned long pnum_begin, 1943: unsigned long pnum_end, 1944: unsigned long map_count, 1945: int nodeid); 1946: 1947: struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1948: pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1949: pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1950: pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1951: pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1952: void *vmemmap_alloc_block(unsigned long size, int node); 1953: void *vmemmap_alloc_block_buf(unsigned long size, int node); 1954: void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1955: int vmemmap_populate_basepages(unsigned long start, unsigned long end, 1956: int node); 1957: int vmemmap_populate(unsigned long start, unsigned long end, int node); 1958: void vmemmap_populate_print_last(void); 1959: #ifdef CONFIG_MEMORY_HOTPLUG 1960: void vmemmap_free(unsigned long start, unsigned long end); 1961: #endif 1962: void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1963: unsigned long size); 1964: 1965: enum mf_flags { 1966: MF_COUNT_INCREASED = 1 << 0, 1967: MF_ACTION_REQUIRED = 1 << 1, 1968: MF_MUST_KILL = 1 << 2, 1969: MF_SOFT_OFFLINE = 1 << 3, 1970: }; 1971: extern int memory_failure(unsigned long pfn, int trapno, int flags); 1972: extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1973: extern int unpoison_memory(unsigned long pfn); 1974: extern int sysctl_memory_failure_early_kill; 1975: extern int sysctl_memory_failure_recovery; 1976: extern void shake_page(struct page *p, int access); 1977: extern atomic_long_t num_poisoned_pages; 1978: extern int soft_offline_page(struct page *page, int flags); 1979: 1980: extern void dump_page(struct page *page); 1981: 1982: #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1983: extern void clear_huge_page(struct page *page, 1984: unsigned long addr, 1985: unsigned int pages_per_huge_page); 1986: extern void copy_user_huge_page(struct page *dst, struct page *src, 1987: unsigned long addr, struct vm_area_struct *vma, 1988: unsigned int pages_per_huge_page); 1989: #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1990: 1991: #ifdef CONFIG_DEBUG_PAGEALLOC 1992: extern unsigned int _debug_guardpage_minorder; 1993: 1994: static inline unsigned int debug_guardpage_minorder(void) 1995: { 1996: return _debug_guardpage_minorder; 1997: } 1998: 1999: static inline bool page_is_guard(struct page *page) 2000: { 2001: return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 2002: } 2003: #else 2004: static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2005: static inline bool page_is_guard(struct page *page) { return false; } 2006: #endif /* CONFIG_DEBUG_PAGEALLOC */ 2007: 2008: #if MAX_NUMNODES > 1 2009: void __init setup_nr_node_ids(void); 2010: #else 2011: static inline void setup_nr_node_ids(void) {} 2012: #endif 2013: 2014: #endif /* __KERNEL__ */ 2015: #endif /* _LINUX_MM_H */ 2016: