Green shading in the line number column means the source is part of the translation unit, red means it is conditionally excluded. Highlighted line numbers link to the translation unit page. Highlighted macros link to the macro page.
1: #ifndef __LINUX_NODEMASK_H 2: #define __LINUX_NODEMASK_H 3: 4: /* 5: * Nodemasks provide a bitmap suitable for representing the 6: * set of Node's in a system, one bit position per Node number. 7: * 8: * See detailed comments in the file linux/bitmap.h describing the 9: * data type on which these nodemasks are based. 10: * 11: * For details of nodemask_scnprintf() and nodemask_parse_user(), 12: * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c. 13: * For details of nodelist_scnprintf() and nodelist_parse(), see 14: * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c. 15: * For details of node_remap(), see bitmap_bitremap in lib/bitmap.c. 16: * For details of nodes_remap(), see bitmap_remap in lib/bitmap.c. 17: * For details of nodes_onto(), see bitmap_onto in lib/bitmap.c. 18: * For details of nodes_fold(), see bitmap_fold in lib/bitmap.c. 19: * 20: * The available nodemask operations are: 21: * 22: * void node_set(node, mask) turn on bit 'node' in mask 23: * void node_clear(node, mask) turn off bit 'node' in mask 24: * void nodes_setall(mask) set all bits 25: * void nodes_clear(mask) clear all bits 26: * int node_isset(node, mask) true iff bit 'node' set in mask 27: * int node_test_and_set(node, mask) test and set bit 'node' in mask 28: * 29: * void nodes_and(dst, src1, src2) dst = src1 & src2 [intersection] 30: * void nodes_or(dst, src1, src2) dst = src1 | src2 [union] 31: * void nodes_xor(dst, src1, src2) dst = src1 ^ src2 32: * void nodes_andnot(dst, src1, src2) dst = src1 & ~src2 33: * void nodes_complement(dst, src) dst = ~src 34: * 35: * int nodes_equal(mask1, mask2) Does mask1 == mask2? 36: * int nodes_intersects(mask1, mask2) Do mask1 and mask2 intersect? 37: * int nodes_subset(mask1, mask2) Is mask1 a subset of mask2? 38: * int nodes_empty(mask) Is mask empty (no bits sets)? 39: * int nodes_full(mask) Is mask full (all bits sets)? 40: * int nodes_weight(mask) Hamming weight - number of set bits 41: * 42: * void nodes_shift_right(dst, src, n) Shift right 43: * void nodes_shift_left(dst, src, n) Shift left 44: * 45: * int first_node(mask) Number lowest set bit, or MAX_NUMNODES 46: * int next_node(node, mask) Next node past 'node', or MAX_NUMNODES 47: * int first_unset_node(mask) First node not set in mask, or 48: * MAX_NUMNODES. 49: * 50: * nodemask_t nodemask_of_node(node) Return nodemask with bit 'node' set 51: * NODE_MASK_ALL Initializer - all bits set 52: * NODE_MASK_NONE Initializer - no bits set 53: * unsigned long *nodes_addr(mask) Array of unsigned long's in mask 54: * 55: * int nodemask_scnprintf(buf, len, mask) Format nodemask for printing 56: * int nodemask_parse_user(ubuf, ulen, mask) Parse ascii string as nodemask 57: * int nodelist_scnprintf(buf, len, mask) Format nodemask as list for printing 58: * int nodelist_parse(buf, map) Parse ascii string as nodelist 59: * int node_remap(oldbit, old, new) newbit = map(old, new)(oldbit) 60: * void nodes_remap(dst, src, old, new) *dst = map(old, new)(src) 61: * void nodes_onto(dst, orig, relmap) *dst = orig relative to relmap 62: * void nodes_fold(dst, orig, sz) dst bits = orig bits mod sz 63: * 64: * for_each_node_mask(node, mask) for-loop node over mask 65: * 66: * int num_online_nodes() Number of online Nodes 67: * int num_possible_nodes() Number of all possible Nodes 68: * 69: * int node_random(mask) Random node with set bit in mask 70: * 71: * int node_online(node) Is some node online? 72: * int node_possible(node) Is some node possible? 73: * 74: * node_set_online(node) set bit 'node' in node_online_map 75: * node_set_offline(node) clear bit 'node' in node_online_map 76: * 77: * for_each_node(node) for-loop node over node_possible_map 78: * for_each_online_node(node) for-loop node over node_online_map 79: * 80: * Subtlety: 81: * 1) The 'type-checked' form of node_isset() causes gcc (3.3.2, anyway) 82: * to generate slightly worse code. So use a simple one-line #define 83: * for node_isset(), instead of wrapping an inline inside a macro, the 84: * way we do the other calls. 85: * 86: * NODEMASK_SCRATCH 87: * When doing above logical AND, OR, XOR, Remap operations the callers tend to 88: * need temporary nodemask_t's on the stack. But if NODES_SHIFT is large, 89: * nodemask_t's consume too much stack space. NODEMASK_SCRATCH is a helper 90: * for such situations. See below and CPUMASK_ALLOC also. 91: */ 92: 93: #include <linux/kernel.h> 94: #include <linux/threads.h> 95: #include <linux/bitmap.h> 96: #include <linux/numa.h> 97: 98: typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t; 99: extern nodemask_t _unused_nodemask_arg_; 100: 101: /* 102: * The inline keyword gives the compiler room to decide to inline, or 103: * not inline a function as it sees best. However, as these functions 104: * are called in both __init and non-__init functions, if they are not 105: * inlined we will end up with a section mis-match error (of the type of 106: * freeable items not being freed). So we must use __always_inline here 107: * to fix the problem. If other functions in the future also end up in 108: * this situation they will also need to be annotated as __always_inline 109: */ 110: #define node_set(node, dst) __node_set((node), &(dst)) 111: static __always_inline void __node_set(int node, volatile nodemask_t *dstp) 112: { 113: set_bit(node, dstp->bits); 114: } 115: 116: #define node_clear(node, dst) __node_clear((node), &(dst)) 117: static inline void __node_clear(int node, volatile nodemask_t *dstp) 118: { 119: clear_bit(node, dstp->bits); 120: } 121: 122: #define nodes_setall(dst) __nodes_setall(&(dst), MAX_NUMNODES) 123: static inline void __nodes_setall(nodemask_t *dstp, int nbits) 124: { 125: bitmap_fill(dstp->bits, nbits); 126: } 127: 128: #define nodes_clear(dst) __nodes_clear(&(dst), MAX_NUMNODES) 129: static inline void __nodes_clear(nodemask_t *dstp, int nbits) 130: { 131: bitmap_zero(dstp->bits, nbits); 132: } 133: 134: /* No static inline type checking - see Subtlety (1) above. */ 135: #define node_isset(node, nodemask) test_bit((node), (nodemask).bits) 136: 137: #define node_test_and_set(node, nodemask) \ 138: __node_test_and_set((node), &(nodemask)) 139: static inline int __node_test_and_set(int node, nodemask_t *addr) 140: { 141: return test_and_set_bit(node, addr->bits); 142: } 143: 144: #define nodes_and(dst, src1, src2) \ 145: __nodes_and(&(dst), &(src1), &(src2), MAX_NUMNODES) 146: static inline void __nodes_and(nodemask_t *dstp, const nodemask_t *src1p, 147: const nodemask_t *src2p, int nbits) 148: { 149: bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits); 150: } 151: 152: #define nodes_or(dst, src1, src2) \ 153: __nodes_or(&(dst), &(src1), &(src2), MAX_NUMNODES) 154: static inline void __nodes_or(nodemask_t *dstp, const nodemask_t *src1p, 155: const nodemask_t *src2p, int nbits) 156: { 157: bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits); 158: } 159: 160: #define nodes_xor(dst, src1, src2) \ 161: __nodes_xor(&(dst), &(src1), &(src2), MAX_NUMNODES) 162: static inline void __nodes_xor(nodemask_t *dstp, const nodemask_t *src1p, 163: const nodemask_t *src2p, int nbits) 164: { 165: bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits); 166: } 167: 168: #define nodes_andnot(dst, src1, src2) \ 169: __nodes_andnot(&(dst), &(src1), &(src2), MAX_NUMNODES) 170: static inline void __nodes_andnot(nodemask_t *dstp, const nodemask_t *src1p, 171: const nodemask_t *src2p, int nbits) 172: { 173: bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits); 174: } 175: 176: #define nodes_complement(dst, src) \ 177: __nodes_complement(&(dst), &(src), MAX_NUMNODES) 178: static inline void __nodes_complement(nodemask_t *dstp, 179: const nodemask_t *srcp, int nbits) 180: { 181: bitmap_complement(dstp->bits, srcp->bits, nbits); 182: } 183: 184: #define nodes_equal(src1, src2) \ 185: __nodes_equal(&(src1), &(src2), MAX_NUMNODES) 186: static inline int __nodes_equal(const nodemask_t *src1p, 187: const nodemask_t *src2p, int nbits) 188: { 189: return bitmap_equal(src1p->bits, src2p->bits, nbits); 190: } 191: 192: #define nodes_intersects(src1, src2) \ 193: __nodes_intersects(&(src1), &(src2), MAX_NUMNODES) 194: static inline int __nodes_intersects(const nodemask_t *src1p, 195: const nodemask_t *src2p, int nbits) 196: { 197: return bitmap_intersects(src1p->bits, src2p->bits, nbits); 198: } 199: 200: #define nodes_subset(src1, src2) \ 201: __nodes_subset(&(src1), &(src2), MAX_NUMNODES) 202: static inline int __nodes_subset(const nodemask_t *src1p, 203: const nodemask_t *src2p, int nbits) 204: { 205: return bitmap_subset(src1p->bits, src2p->bits, nbits); 206: } 207: 208: #define nodes_empty(src) __nodes_empty(&(src), MAX_NUMNODES) 209: static inline int __nodes_empty(const nodemask_t *srcp, int nbits) 210: { 211: return bitmap_empty(srcp->bits, nbits); 212: } 213: 214: #define nodes_full(nodemask) __nodes_full(&(nodemask), MAX_NUMNODES) 215: static inline int __nodes_full(const nodemask_t *srcp, int nbits) 216: { 217: return bitmap_full(srcp->bits, nbits); 218: } 219: 220: #define nodes_weight(nodemask) __nodes_weight(&(nodemask), MAX_NUMNODES) 221: static inline int __nodes_weight(const nodemask_t *srcp, int nbits) 222: { 223: return bitmap_weight(srcp->bits, nbits); 224: } 225: 226: #define nodes_shift_right(dst, src, n) \ 227: __nodes_shift_right(&(dst), &(src), (n), MAX_NUMNODES) 228: static inline void __nodes_shift_right(nodemask_t *dstp, 229: const nodemask_t *srcp, int n, int nbits) 230: { 231: bitmap_shift_right(dstp->bits, srcp->bits, n, nbits); 232: } 233: 234: #define nodes_shift_left(dst, src, n) \ 235: __nodes_shift_left(&(dst), &(src), (n), MAX_NUMNODES) 236: static inline void __nodes_shift_left(nodemask_t *dstp, 237: const nodemask_t *srcp, int n, int nbits) 238: { 239: bitmap_shift_left(dstp->bits, srcp->bits, n, nbits); 240: } 241: 242: /* FIXME: better would be to fix all architectures to never return 243: > MAX_NUMNODES, then the silly min_ts could be dropped. */ 244: 245: #define first_node(src) __first_node(&(src)) 246: static inline int __first_node(const nodemask_t *srcp) 247: { 248: return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES)); 249: } 250: 251: #define next_node(n, src) __next_node((n), &(src)) 252: static inline int __next_node(int n, const nodemask_t *srcp) 253: { 254: return min_t(int,MAX_NUMNODES,find_next_bit(srcp->bits, MAX_NUMNODES, n+1)); 255: } 256: 257: static inline void init_nodemask_of_node(nodemask_t *mask, int node) 258: { 259: nodes_clear(*mask); 260: node_set(node, *mask); 261: } 262: 263: #define nodemask_of_node(node) \ 264: ({ \ 265: typeof(_unused_nodemask_arg_) m; \ 266: if (sizeof(m) == sizeof(unsigned long)) { \ 267: m.bits[0] = 1UL << (node); \ 268: } else { \ 269: init_nodemask_of_node(&m, (node)); \ 270: } \ 271: m; \ 272: }) 273: 274: #define first_unset_node(mask) __first_unset_node(&(mask)) 275: static inline int __first_unset_node(const nodemask_t *maskp) 276: { 277: return min_t(int,MAX_NUMNODES, 278: find_first_zero_bit(maskp->bits, MAX_NUMNODES)); 279: } 280: 281: #define NODE_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(MAX_NUMNODES) 282: 283: #if MAX_NUMNODES <= BITS_PER_LONG 284: 285: #define NODE_MASK_ALL \ 286: ((nodemask_t) { { \ 287: [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \ 288: } }) 289: 290: #else 291: 292: #define NODE_MASK_ALL \ 293: ((nodemask_t) { { \ 294: [0 ... BITS_TO_LONGS(MAX_NUMNODES)-2] = ~0UL, \ 295: [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \ 296: } }) 297: 298: #endif 299: 300: #define NODE_MASK_NONE \ 301: ((nodemask_t) { { \ 302: [0 ... BITS_TO_LONGS(MAX_NUMNODES)-1] = 0UL \ 303: } }) 304: 305: #define nodes_addr(src) ((src).bits) 306: 307: #define nodemask_scnprintf(buf, len, src) \ 308: __nodemask_scnprintf((buf), (len), &(src), MAX_NUMNODES) 309: static inline int __nodemask_scnprintf(char *buf, int len, 310: const nodemask_t *srcp, int nbits) 311: { 312: return bitmap_scnprintf(buf, len, srcp->bits, nbits); 313: } 314: 315: #define nodemask_parse_user(ubuf, ulen, dst) \ 316: __nodemask_parse_user((ubuf), (ulen), &(dst), MAX_NUMNODES) 317: static inline int __nodemask_parse_user(const char __user *buf, int len, 318: nodemask_t *dstp, int nbits) 319: { 320: return bitmap_parse_user(buf, len, dstp->bits, nbits); 321: } 322: 323: #define nodelist_scnprintf(buf, len, src) \ 324: __nodelist_scnprintf((buf), (len), &(src), MAX_NUMNODES) 325: static inline int __nodelist_scnprintf(char *buf, int len, 326: const nodemask_t *srcp, int nbits) 327: { 328: return bitmap_scnlistprintf(buf, len, srcp->bits, nbits); 329: } 330: 331: #define nodelist_parse(buf, dst) __nodelist_parse((buf), &(dst), MAX_NUMNODES) 332: static inline int __nodelist_parse(const char *buf, nodemask_t *dstp, int nbits) 333: { 334: return bitmap_parselist(buf, dstp->bits, nbits); 335: } 336: 337: #define node_remap(oldbit, old, new) \ 338: __node_remap((oldbit), &(old), &(new), MAX_NUMNODES) 339: static inline int __node_remap(int oldbit, 340: const nodemask_t *oldp, const nodemask_t *newp, int nbits) 341: { 342: return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits); 343: } 344: 345: #define nodes_remap(dst, src, old, new) \ 346: __nodes_remap(&(dst), &(src), &(old), &(new), MAX_NUMNODES) 347: static inline void __nodes_remap(nodemask_t *dstp, const nodemask_t *srcp, 348: const nodemask_t *oldp, const nodemask_t *newp, int nbits) 349: { 350: bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits); 351: } 352: 353: #define nodes_onto(dst, orig, relmap) \ 354: __nodes_onto(&(dst), &(orig), &(relmap), MAX_NUMNODES) 355: static inline void __nodes_onto(nodemask_t *dstp, const nodemask_t *origp, 356: const nodemask_t *relmapp, int nbits) 357: { 358: bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits); 359: } 360: 361: #define nodes_fold(dst, orig, sz) \ 362: __nodes_fold(&(dst), &(orig), sz, MAX_NUMNODES) 363: static inline void __nodes_fold(nodemask_t *dstp, const nodemask_t *origp, 364: int sz, int nbits) 365: { 366: bitmap_fold(dstp->bits, origp->bits, sz, nbits); 367: } 368: 369: #if MAX_NUMNODES > 1 370: #define for_each_node_mask(node, mask) \ 371: for ((node) = first_node(mask); \ 372: (node) < MAX_NUMNODES; \ 373: (node) = next_node((node), (mask))) 374: #else /* MAX_NUMNODES == 1 */ 375: #define for_each_node_mask(node, mask) \ 376: if (!nodes_empty(mask)) \ 377: for ((node) = 0; (node) < 1; (node)++) 378: #endif /* MAX_NUMNODES */ 379: 380: /* 381: * Bitmasks that are kept for all the nodes. 382: */ 383: enum node_states { 384: N_POSSIBLE, /* The node could become online at some point */ 385: N_ONLINE, /* The node is online */ 386: N_NORMAL_MEMORY, /* The node has regular memory */ 387: #ifdef CONFIG_HIGHMEM 388: N_HIGH_MEMORY, /* The node has regular or high memory */ 389: #else 390: N_HIGH_MEMORY = N_NORMAL_MEMORY, 391: #endif 392: #ifdef CONFIG_MOVABLE_NODE 393: N_MEMORY, /* The node has memory(regular, high, movable) */ 394: #else 395: N_MEMORY = N_HIGH_MEMORY, 396: #endif 397: N_CPU, /* The node has one or more cpus */ 398: NR_NODE_STATES 399: }; 400: 401: /* 402: * The following particular system nodemasks and operations 403: * on them manage all possible and online nodes. 404: */ 405: 406: extern nodemask_t node_states[NR_NODE_STATES]; 407: 408: #if MAX_NUMNODES > 1 409: static inline int node_state(int node, enum node_states state) 410: { 411: return node_isset(node, node_states[state]); 412: } 413: 414: static inline void node_set_state(int node, enum node_states state) 415: { 416: __node_set(node, &node_states[state]); 417: } 418: 419: static inline void node_clear_state(int node, enum node_states state) 420: { 421: __node_clear(node, &node_states[state]); 422: } 423: 424: static inline int num_node_state(enum node_states state) 425: { 426: return nodes_weight(node_states[state]); 427: } 428: 429: #define for_each_node_state(__node, __state) \ 430: for_each_node_mask((__node), node_states[__state]) 431: 432: #define first_online_node first_node(node_states[N_ONLINE]) 433: #define next_online_node(nid) next_node((nid), node_states[N_ONLINE]) 434: 435: extern int nr_node_ids; 436: extern int nr_online_nodes; 437: 438: static inline void node_set_online(int nid) 439: { 440: node_set_state(nid, N_ONLINE); 441: nr_online_nodes = num_node_state(N_ONLINE); 442: } 443: 444: static inline void node_set_offline(int nid) 445: { 446: node_clear_state(nid, N_ONLINE); 447: nr_online_nodes = num_node_state(N_ONLINE); 448: } 449: 450: #else 451: 452: static inline int node_state(int node, enum node_states state) 453: { 454: return node == 0; 455: } 456: 457: static inline void node_set_state(int node, enum node_states state) 458: { 459: } 460: 461: static inline void node_clear_state(int node, enum node_states state) 462: { 463: } 464: 465: static inline int num_node_state(enum node_states state) 466: { 467: return 1; 468: } 469: 470: #define for_each_node_state(node, __state) \ 471: for ( (node) = 0; (node) == 0; (node) = 1) 472: 473: #define first_online_node 0 474: #define next_online_node(nid) (MAX_NUMNODES) 475: #define nr_node_ids 1 476: #define nr_online_nodes 1 477: 478: #define node_set_online(node) node_set_state((node), N_ONLINE) 479: #define node_set_offline(node) node_clear_state((node), N_ONLINE) 480: 481: #endif 482: 483: #if defined(CONFIG_NUMA) && (MAX_NUMNODES > 1) 484: extern int node_random(const nodemask_t *maskp); 485: #else 486: static inline int node_random(const nodemask_t *mask) 487: { 488: return 0; 489: } 490: #endif 491: 492: #define node_online_map node_states[N_ONLINE] 493: #define node_possible_map node_states[N_POSSIBLE] 494: 495: #define num_online_nodes() num_node_state(N_ONLINE) 496: #define num_possible_nodes() num_node_state(N_POSSIBLE) 497: #define node_online(node) node_state((node), N_ONLINE) 498: #define node_possible(node) node_state((node), N_POSSIBLE) 499: 500: #define for_each_node(node) for_each_node_state(node, N_POSSIBLE) 501: #define for_each_online_node(node) for_each_node_state(node, N_ONLINE) 502: 503: /* 504: * For nodemask scrach area. 505: * NODEMASK_ALLOC(type, name) allocates an object with a specified type and 506: * name. 507: */ 508: #if NODES_SHIFT > 8 /* nodemask_t > 256 bytes */ 509: #define NODEMASK_ALLOC(type, name, gfp_flags) \ 510: type *name = kmalloc(sizeof(*name), gfp_flags) 511: #define NODEMASK_FREE(m) kfree(m) 512: #else 513: #define NODEMASK_ALLOC(type, name, gfp_flags) type _##name, *name = &_##name 514: #define NODEMASK_FREE(m) do {} while (0) 515: #endif 516: 517: /* A example struture for using NODEMASK_ALLOC, used in mempolicy. */ 518: struct nodemask_scratch { 519: nodemask_t mask1; 520: nodemask_t mask2; 521: }; 522: 523: #define NODEMASK_SCRATCH(x) \ 524: NODEMASK_ALLOC(struct nodemask_scratch, x, \ 525: GFP_KERNEL | __GFP_NORETRY) 526: #define NODEMASK_SCRATCH_FREE(x) NODEMASK_FREE(x) 527: 528: 529: #endif /* __LINUX_NODEMASK_H */ 530: