File: /Users/paulross/dev/linux/linux-3.13/include/linux/rcupdate.h

Green shading in the line number column means the source is part of the translation unit, red means it is conditionally excluded. Highlighted line numbers link to the translation unit page. Highlighted macros link to the macro page.

       1: /*
       2:  * Read-Copy Update mechanism for mutual exclusion
       3:  *
       4:  * This program is free software; you can redistribute it and/or modify
       5:  * it under the terms of the GNU General Public License as published by
       6:  * the Free Software Foundation; either version 2 of the License, or
       7:  * (at your option) any later version.
       8:  *
       9:  * This program is distributed in the hope that it will be useful,
      10:  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      11:  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      12:  * GNU General Public License for more details.
      13:  *
      14:  * You should have received a copy of the GNU General Public License
      15:  * along with this program; if not, write to the Free Software
      16:  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
      17:  *
      18:  * Copyright IBM Corporation, 2001
      19:  *
      20:  * Author: Dipankar Sarma <dipankar@in.ibm.com>
      21:  *
      22:  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
      23:  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
      24:  * Papers:
      25:  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
      26:  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
      27:  *
      28:  * For detailed explanation of Read-Copy Update mechanism see -
      29:  *        http://lse.sourceforge.net/locking/rcupdate.html
      30:  *
      31:  */
      32: 
      33: #ifndef __LINUX_RCUPDATE_H
      34: #define __LINUX_RCUPDATE_H
      35: 
      36: #include <linux/types.h>
      37: #include <linux/cache.h>
      38: #include <linux/spinlock.h>
      39: #include <linux/threads.h>
      40: #include <linux/cpumask.h>
      41: #include <linux/seqlock.h>
      42: #include <linux/lockdep.h>
      43: #include <linux/completion.h>
      44: #include <linux/debugobjects.h>
      45: #include <linux/bug.h>
      46: #include <linux/compiler.h>
      47: 
      48: #ifdef CONFIG_RCU_TORTURE_TEST
      49: extern int rcutorture_runnable; /* for sysctl */
      50: #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
      51: 
      52: #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
      53: extern void rcutorture_record_test_transition(void);
      54: extern void rcutorture_record_progress(unsigned long vernum);
      55: extern void do_trace_rcu_torture_read(const char *rcutorturename,
      56:                       struct rcu_head *rhp,
      57:                       unsigned long secs,
      58:                       unsigned long c_old,
      59:                       unsigned long c);
      60: #else
      61: static inline void rcutorture_record_test_transition(void)
      62: {
      63: }
      64: static inline void rcutorture_record_progress(unsigned long vernum)
      65: {
      66: }
      67: #ifdef CONFIG_RCU_TRACE
      68: extern void do_trace_rcu_torture_read(const char *rcutorturename,
      69:                       struct rcu_head *rhp,
      70:                       unsigned long secs,
      71:                       unsigned long c_old,
      72:                       unsigned long c);
      73: #else
      74: #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
      75:     do { } while (0)
      76: #endif
      77: #endif
      78: 
      79: #define UINT_CMP_GE(a, b)    (UINT_MAX / 2 >= (a) - (b))
      80: #define UINT_CMP_LT(a, b)    (UINT_MAX / 2 < (a) - (b))
      81: #define ULONG_CMP_GE(a, b)    (ULONG_MAX / 2 >= (a) - (b))
      82: #define ULONG_CMP_LT(a, b)    (ULONG_MAX / 2 < (a) - (b))
      83: #define ulong2long(a)        (*(long *)(&(a)))
      84: 
      85: /* Exported common interfaces */
      86: 
      87: #ifdef CONFIG_PREEMPT_RCU
      88: 
      89: /**
      90:  * call_rcu() - Queue an RCU callback for invocation after a grace period.
      91:  * @head: structure to be used for queueing the RCU updates.
      92:  * @func: actual callback function to be invoked after the grace period
      93:  *
      94:  * The callback function will be invoked some time after a full grace
      95:  * period elapses, in other words after all pre-existing RCU read-side
      96:  * critical sections have completed.  However, the callback function
      97:  * might well execute concurrently with RCU read-side critical sections
      98:  * that started after call_rcu() was invoked.  RCU read-side critical
      99:  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
     100:  * and may be nested.
     101:  *
     102:  * Note that all CPUs must agree that the grace period extended beyond
     103:  * all pre-existing RCU read-side critical section.  On systems with more
     104:  * than one CPU, this means that when "func()" is invoked, each CPU is
     105:  * guaranteed to have executed a full memory barrier since the end of its
     106:  * last RCU read-side critical section whose beginning preceded the call
     107:  * to call_rcu().  It also means that each CPU executing an RCU read-side
     108:  * critical section that continues beyond the start of "func()" must have
     109:  * executed a memory barrier after the call_rcu() but before the beginning
     110:  * of that RCU read-side critical section.  Note that these guarantees
     111:  * include CPUs that are offline, idle, or executing in user mode, as
     112:  * well as CPUs that are executing in the kernel.
     113:  *
     114:  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
     115:  * resulting RCU callback function "func()", then both CPU A and CPU B are
     116:  * guaranteed to execute a full memory barrier during the time interval
     117:  * between the call to call_rcu() and the invocation of "func()" -- even
     118:  * if CPU A and CPU B are the same CPU (but again only if the system has
     119:  * more than one CPU).
     120:  */
     121: extern void call_rcu(struct rcu_head *head,
     122:                   void (*func)(struct rcu_head *head));
     123: 
     124: #else /* #ifdef CONFIG_PREEMPT_RCU */
     125: 
     126: /* In classic RCU, call_rcu() is just call_rcu_sched(). */
     127: #define    call_rcu    call_rcu_sched
     128: 
     129: #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
     130: 
     131: /**
     132:  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
     133:  * @head: structure to be used for queueing the RCU updates.
     134:  * @func: actual callback function to be invoked after the grace period
     135:  *
     136:  * The callback function will be invoked some time after a full grace
     137:  * period elapses, in other words after all currently executing RCU
     138:  * read-side critical sections have completed. call_rcu_bh() assumes
     139:  * that the read-side critical sections end on completion of a softirq
     140:  * handler. This means that read-side critical sections in process
     141:  * context must not be interrupted by softirqs. This interface is to be
     142:  * used when most of the read-side critical sections are in softirq context.
     143:  * RCU read-side critical sections are delimited by :
     144:  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
     145:  *  OR
     146:  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
     147:  *  These may be nested.
     148:  *
     149:  * See the description of call_rcu() for more detailed information on
     150:  * memory ordering guarantees.
     151:  */
     152: extern void call_rcu_bh(struct rcu_head *head,
     153:             void (*func)(struct rcu_head *head));
     154: 
     155: /**
     156:  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
     157:  * @head: structure to be used for queueing the RCU updates.
     158:  * @func: actual callback function to be invoked after the grace period
     159:  *
     160:  * The callback function will be invoked some time after a full grace
     161:  * period elapses, in other words after all currently executing RCU
     162:  * read-side critical sections have completed. call_rcu_sched() assumes
     163:  * that the read-side critical sections end on enabling of preemption
     164:  * or on voluntary preemption.
     165:  * RCU read-side critical sections are delimited by :
     166:  *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
     167:  *  OR
     168:  *  anything that disables preemption.
     169:  *  These may be nested.
     170:  *
     171:  * See the description of call_rcu() for more detailed information on
     172:  * memory ordering guarantees.
     173:  */
     174: extern void call_rcu_sched(struct rcu_head *head,
     175:                void (*func)(struct rcu_head *rcu));
     176: 
     177: extern void synchronize_sched(void);
     178: 
     179: #ifdef CONFIG_PREEMPT_RCU
     180: 
     181: extern void __rcu_read_lock(void);
     182: extern void __rcu_read_unlock(void);
     183: extern void rcu_read_unlock_special(struct task_struct *t);
     184: void synchronize_rcu(void);
     185: 
     186: /*
     187:  * Defined as a macro as it is a very low level header included from
     188:  * areas that don't even know about current.  This gives the rcu_read_lock()
     189:  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
     190:  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
     191:  */
     192: #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
     193: 
     194: #else /* #ifdef CONFIG_PREEMPT_RCU */
     195: 
     196: static inline void __rcu_read_lock(void)
     197: {
     198:     preempt_disable();
     199: }
     200: 
     201: static inline void __rcu_read_unlock(void)
     202: {
     203:     preempt_enable();
     204: }
     205: 
     206: static inline void synchronize_rcu(void)
     207: {
     208:     synchronize_sched();
     209: }
     210: 
     211: static inline int rcu_preempt_depth(void)
     212: {
     213:     return 0;
     214: }
     215: 
     216: #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
     217: 
     218: /* Internal to kernel */
     219: extern void rcu_init(void);
     220: extern void rcu_sched_qs(int cpu);
     221: extern void rcu_bh_qs(int cpu);
     222: extern void rcu_check_callbacks(int cpu, int user);
     223: struct notifier_block;
     224: extern void rcu_idle_enter(void);
     225: extern void rcu_idle_exit(void);
     226: extern void rcu_irq_enter(void);
     227: extern void rcu_irq_exit(void);
     228: 
     229: #ifdef CONFIG_RCU_USER_QS
     230: extern void rcu_user_enter(void);
     231: extern void rcu_user_exit(void);
     232: #else
     233: static inline void rcu_user_enter(void) { }
     234: static inline void rcu_user_exit(void) { }
     235: static inline void rcu_user_hooks_switch(struct task_struct *prev,
     236:                      struct task_struct *next) { }
     237: #endif /* CONFIG_RCU_USER_QS */
     238: 
     239: /**
     240:  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
     241:  * @a: Code that RCU needs to pay attention to.
     242:  *
     243:  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
     244:  * in the inner idle loop, that is, between the rcu_idle_enter() and
     245:  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
     246:  * critical sections.  However, things like powertop need tracepoints
     247:  * in the inner idle loop.
     248:  *
     249:  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
     250:  * will tell RCU that it needs to pay attending, invoke its argument
     251:  * (in this example, a call to the do_something_with_RCU() function),
     252:  * and then tell RCU to go back to ignoring this CPU.  It is permissible
     253:  * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
     254:  * quite limited.  If deeper nesting is required, it will be necessary
     255:  * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
     256:  */
     257: #define RCU_NONIDLE(a) \
     258:     do { \
     259:         rcu_irq_enter(); \
     260:         do { a; } while (0); \
     261:         rcu_irq_exit(); \
     262:     } while (0)
     263: 
     264: #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
     265: extern bool __rcu_is_watching(void);
     266: #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
     267: 
     268: /*
     269:  * Infrastructure to implement the synchronize_() primitives in
     270:  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
     271:  */
     272: 
     273: typedef void call_rcu_func_t(struct rcu_head *head,
     274:                  void (*func)(struct rcu_head *head));
     275: void wait_rcu_gp(call_rcu_func_t crf);
     276: 
     277: #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
     278: #include <linux/rcutree.h>
     279: #elif defined(CONFIG_TINY_RCU)
     280: #include <linux/rcutiny.h>
     281: #else
     282: #error "Unknown RCU implementation specified to kernel configuration"
     283: #endif
     284: 
     285: /*
     286:  * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
     287:  * initialization and destruction of rcu_head on the stack. rcu_head structures
     288:  * allocated dynamically in the heap or defined statically don't need any
     289:  * initialization.
     290:  */
     291: #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
     292: extern void init_rcu_head_on_stack(struct rcu_head *head);
     293: extern void destroy_rcu_head_on_stack(struct rcu_head *head);
     294: #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
     295: static inline void init_rcu_head_on_stack(struct rcu_head *head)
     296: {
     297: }
     298: 
     299: static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
     300: {
     301: }
     302: #endif    /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
     303: 
     304: #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
     305: bool rcu_lockdep_current_cpu_online(void);
     306: #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
     307: static inline bool rcu_lockdep_current_cpu_online(void)
     308: {
     309:     return 1;
     310: }
     311: #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
     312: 
     313: #ifdef CONFIG_DEBUG_LOCK_ALLOC
     314: 
     315: static inline void rcu_lock_acquire(struct lockdep_map *map)
     316: {
     317:     lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
     318: }
     319: 
     320: static inline void rcu_lock_release(struct lockdep_map *map)
     321: {
     322:     lock_release(map, 1, _THIS_IP_);
     323: }
     324: 
     325: extern struct lockdep_map rcu_lock_map;
     326: extern struct lockdep_map rcu_bh_lock_map;
     327: extern struct lockdep_map rcu_sched_lock_map;
     328: extern int debug_lockdep_rcu_enabled(void);
     329: 
     330: /**
     331:  * rcu_read_lock_held() - might we be in RCU read-side critical section?
     332:  *
     333:  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
     334:  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
     335:  * this assumes we are in an RCU read-side critical section unless it can
     336:  * prove otherwise.  This is useful for debug checks in functions that
     337:  * require that they be called within an RCU read-side critical section.
     338:  *
     339:  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
     340:  * and while lockdep is disabled.
     341:  *
     342:  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
     343:  * occur in the same context, for example, it is illegal to invoke
     344:  * rcu_read_unlock() in process context if the matching rcu_read_lock()
     345:  * was invoked from within an irq handler.
     346:  *
     347:  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
     348:  * offline from an RCU perspective, so check for those as well.
     349:  */
     350: static inline int rcu_read_lock_held(void)
     351: {
     352:     if (!debug_lockdep_rcu_enabled())
     353:         return 1;
     354:     if (!rcu_is_watching())
     355:         return 0;
     356:     if (!rcu_lockdep_current_cpu_online())
     357:         return 0;
     358:     return lock_is_held(&rcu_lock_map);
     359: }
     360: 
     361: /*
     362:  * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
     363:  * hell.
     364:  */
     365: extern int rcu_read_lock_bh_held(void);
     366: 
     367: /**
     368:  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
     369:  *
     370:  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
     371:  * RCU-sched read-side critical section.  In absence of
     372:  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
     373:  * critical section unless it can prove otherwise.  Note that disabling
     374:  * of preemption (including disabling irqs) counts as an RCU-sched
     375:  * read-side critical section.  This is useful for debug checks in functions
     376:  * that required that they be called within an RCU-sched read-side
     377:  * critical section.
     378:  *
     379:  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
     380:  * and while lockdep is disabled.
     381:  *
     382:  * Note that if the CPU is in the idle loop from an RCU point of
     383:  * view (ie: that we are in the section between rcu_idle_enter() and
     384:  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
     385:  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
     386:  * that are in such a section, considering these as in extended quiescent
     387:  * state, so such a CPU is effectively never in an RCU read-side critical
     388:  * section regardless of what RCU primitives it invokes.  This state of
     389:  * affairs is required --- we need to keep an RCU-free window in idle
     390:  * where the CPU may possibly enter into low power mode. This way we can
     391:  * notice an extended quiescent state to other CPUs that started a grace
     392:  * period. Otherwise we would delay any grace period as long as we run in
     393:  * the idle task.
     394:  *
     395:  * Similarly, we avoid claiming an SRCU read lock held if the current
     396:  * CPU is offline.
     397:  */
     398: #ifdef CONFIG_PREEMPT_COUNT
     399: static inline int rcu_read_lock_sched_held(void)
     400: {
     401:     int lockdep_opinion = 0;
     402: 
     403:     if (!debug_lockdep_rcu_enabled())
     404:         return 1;
     405:     if (!rcu_is_watching())
     406:         return 0;
     407:     if (!rcu_lockdep_current_cpu_online())
     408:         return 0;
     409:     if (debug_locks)
     410:         lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
     411:     return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
     412: }
     413: #else /* #ifdef CONFIG_PREEMPT_COUNT */
     414: static inline int rcu_read_lock_sched_held(void)
     415: {
     416:     return 1;
     417: }
     418: #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
     419: 
     420: #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
     421: 
     422: # define rcu_lock_acquire(a)        do { } while (0)
     423: # define rcu_lock_release(a)        do { } while (0)
     424: 
     425: static inline int rcu_read_lock_held(void)
     426: {
     427:     return 1;
     428: }
     429: 
     430: static inline int rcu_read_lock_bh_held(void)
     431: {
     432:     return 1;
     433: }
     434: 
     435: #ifdef CONFIG_PREEMPT_COUNT
     436: static inline int rcu_read_lock_sched_held(void)
     437: {
     438:     return preempt_count() != 0 || irqs_disabled();
     439: }
     440: #else /* #ifdef CONFIG_PREEMPT_COUNT */
     441: static inline int rcu_read_lock_sched_held(void)
     442: {
     443:     return 1;
     444: }
     445: #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
     446: 
     447: #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
     448: 
     449: #ifdef CONFIG_PROVE_RCU
     450: 
     451: extern int rcu_my_thread_group_empty(void);
     452: 
     453: /**
     454:  * rcu_lockdep_assert - emit lockdep splat if specified condition not met
     455:  * @c: condition to check
     456:  * @s: informative message
     457:  */
     458: #define rcu_lockdep_assert(c, s)                    \
     459:     do {                                \
     460:         static bool __section(.data.unlikely) __warned;        \
     461:         if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {    \
     462:             __warned = true;                \
     463:             lockdep_rcu_suspicious(__FILE__, __LINE__, s);    \
     464:         }                            \
     465:     } while (0)
     466: 
     467: #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
     468: static inline void rcu_preempt_sleep_check(void)
     469: {
     470:     rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
     471:                "Illegal context switch in RCU read-side critical section");
     472: }
     473: #else /* #ifdef CONFIG_PROVE_RCU */
     474: static inline void rcu_preempt_sleep_check(void)
     475: {
     476: }
     477: #endif /* #else #ifdef CONFIG_PROVE_RCU */
     478: 
     479: #define rcu_sleep_check()                        \
     480:     do {                                \
     481:         rcu_preempt_sleep_check();                \
     482:         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),    \
     483:                    "Illegal context switch in RCU-bh"    \
     484:                    " read-side critical section");    \
     485:         rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),    \
     486:                    "Illegal context switch in RCU-sched"\
                   " read-side critical section");    \
     488:     } while (0)
     489: 
     490: #else /* #ifdef CONFIG_PROVE_RCU */
     491: 
     492: #define rcu_lockdep_assert(c, s) do { } while (0)
     493: #define rcu_sleep_check() do { } while (0)
     494: 
     495: #endif /* #else #ifdef CONFIG_PROVE_RCU */
     496: 
     497: /*
     498:  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
     499:  * and rcu_assign_pointer().  Some of these could be folded into their
     500:  * callers, but they are left separate in order to ease introduction of
     501:  * multiple flavors of pointers to match the multiple flavors of RCU
     502:  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
     503:  * the future.
     504:  */
     505: 
     506: #ifdef __CHECKER__
     507: #define rcu_dereference_sparse(p, space) \
     508:     ((void)(((typeof(*p) space *)p) == p))
     509: #else /* #ifdef __CHECKER__ */
     510: #define rcu_dereference_sparse(p, space)
     511: #endif /* #else #ifdef __CHECKER__ */
     512: 
     513: #define __rcu_access_pointer(p, space) \
     514:     ({ \
     515:         typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
     516:         rcu_dereference_sparse(p, space); \
     517:         ((typeof(*p) __force __kernel *)(_________p1)); \
     518:     })
     519: #define __rcu_dereference_check(p, c, space) \
     520:     ({ \
     521:         typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
     522:         rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
     523:                       " usage"); \
     524:         rcu_dereference_sparse(p, space); \
     525:         smp_read_barrier_depends(); \
     526:         ((typeof(*p) __force __kernel *)(_________p1)); \
     527:     })
     528: #define __rcu_dereference_protected(p, c, space) \
     529:     ({ \
     530:         rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
     531:                       " usage"); \
     532:         rcu_dereference_sparse(p, space); \
     533:         ((typeof(*p) __force __kernel *)(p)); \
     534:     })
     535: 
     536: #define __rcu_access_index(p, space) \
     537:     ({ \
     538:         typeof(p) _________p1 = ACCESS_ONCE(p); \
     539:         rcu_dereference_sparse(p, space); \
     540:         (_________p1); \
     541:     })
     542: #define __rcu_dereference_index_check(p, c) \
     543:     ({ \
     544:         typeof(p) _________p1 = ACCESS_ONCE(p); \
     545:         rcu_lockdep_assert(c, \
     546:                    "suspicious rcu_dereference_index_check()" \
     547:                    " usage"); \
     548:         smp_read_barrier_depends(); \
     549:         (_________p1); \
     550:     })
     551: #define __rcu_assign_pointer(p, v, space) \
     552:     do { \
     553:         smp_wmb(); \
     554:         (p) = (typeof(*v) __force space *)(v); \
     555:     } while (0)
     556: 
     557: 
     558: /**
     559:  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
     560:  * @p: The pointer to read
     561:  *
     562:  * Return the value of the specified RCU-protected pointer, but omit the
     563:  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
     564:  * when the value of this pointer is accessed, but the pointer is not
     565:  * dereferenced, for example, when testing an RCU-protected pointer against
     566:  * NULL.  Although rcu_access_pointer() may also be used in cases where
     567:  * update-side locks prevent the value of the pointer from changing, you
     568:  * should instead use rcu_dereference_protected() for this use case.
     569:  *
     570:  * It is also permissible to use rcu_access_pointer() when read-side
     571:  * access to the pointer was removed at least one grace period ago, as
     572:  * is the case in the context of the RCU callback that is freeing up
     573:  * the data, or after a synchronize_rcu() returns.  This can be useful
     574:  * when tearing down multi-linked structures after a grace period
     575:  * has elapsed.
     576:  */
     577: #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
     578: 
     579: /**
     580:  * rcu_dereference_check() - rcu_dereference with debug checking
     581:  * @p: The pointer to read, prior to dereferencing
     582:  * @c: The conditions under which the dereference will take place
     583:  *
     584:  * Do an rcu_dereference(), but check that the conditions under which the
     585:  * dereference will take place are correct.  Typically the conditions
     586:  * indicate the various locking conditions that should be held at that
     587:  * point.  The check should return true if the conditions are satisfied.
     588:  * An implicit check for being in an RCU read-side critical section
     589:  * (rcu_read_lock()) is included.
     590:  *
     591:  * For example:
     592:  *
     593:  *    bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
     594:  *
     595:  * could be used to indicate to lockdep that foo->bar may only be dereferenced
     596:  * if either rcu_read_lock() is held, or that the lock required to replace
     597:  * the bar struct at foo->bar is held.
     598:  *
     599:  * Note that the list of conditions may also include indications of when a lock
     600:  * need not be held, for example during initialisation or destruction of the
     601:  * target struct:
     602:  *
     603:  *    bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
     604:  *                          atomic_read(&foo->usage) == 0);
     605:  *
     606:  * Inserts memory barriers on architectures that require them
     607:  * (currently only the Alpha), prevents the compiler from refetching
     608:  * (and from merging fetches), and, more importantly, documents exactly
     609:  * which pointers are protected by RCU and checks that the pointer is
     610:  * annotated as __rcu.
     611:  */
     612: #define rcu_dereference_check(p, c) \
     613:     __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
     614: 
     615: /**
     616:  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
     617:  * @p: The pointer to read, prior to dereferencing
     618:  * @c: The conditions under which the dereference will take place
     619:  *
     620:  * This is the RCU-bh counterpart to rcu_dereference_check().
     621:  */
     622: #define rcu_dereference_bh_check(p, c) \
     623:     __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
     624: 
     625: /**
     626:  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
     627:  * @p: The pointer to read, prior to dereferencing
     628:  * @c: The conditions under which the dereference will take place
     629:  *
     630:  * This is the RCU-sched counterpart to rcu_dereference_check().
     631:  */
     632: #define rcu_dereference_sched_check(p, c) \
     633:     __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
     634:                 __rcu)
     635: 
     636: #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
     637: 
     638: /*
     639:  * The tracing infrastructure traces RCU (we want that), but unfortunately
     640:  * some of the RCU checks causes tracing to lock up the system.
     641:  *
     642:  * The tracing version of rcu_dereference_raw() must not call
     643:  * rcu_read_lock_held().
     644:  */
     645: #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
     646: 
     647: /**
     648:  * rcu_access_index() - fetch RCU index with no dereferencing
     649:  * @p: The index to read
     650:  *
     651:  * Return the value of the specified RCU-protected index, but omit the
     652:  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
     653:  * when the value of this index is accessed, but the index is not
     654:  * dereferenced, for example, when testing an RCU-protected index against
     655:  * -1.  Although rcu_access_index() may also be used in cases where
     656:  * update-side locks prevent the value of the index from changing, you
     657:  * should instead use rcu_dereference_index_protected() for this use case.
     658:  */
     659: #define rcu_access_index(p) __rcu_access_index((p), __rcu)
     660: 
     661: /**
     662:  * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
     663:  * @p: The pointer to read, prior to dereferencing
     664:  * @c: The conditions under which the dereference will take place
     665:  *
     666:  * Similar to rcu_dereference_check(), but omits the sparse checking.
     667:  * This allows rcu_dereference_index_check() to be used on integers,
     668:  * which can then be used as array indices.  Attempting to use
     669:  * rcu_dereference_check() on an integer will give compiler warnings
     670:  * because the sparse address-space mechanism relies on dereferencing
     671:  * the RCU-protected pointer.  Dereferencing integers is not something
     672:  * that even gcc will put up with.
     673:  *
     674:  * Note that this function does not implicitly check for RCU read-side
     675:  * critical sections.  If this function gains lots of uses, it might
     676:  * make sense to provide versions for each flavor of RCU, but it does
     677:  * not make sense as of early 2010.
     678:  */
     679: #define rcu_dereference_index_check(p, c) \
     680:     __rcu_dereference_index_check((p), (c))
     681: 
     682: /**
     683:  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
     684:  * @p: The pointer to read, prior to dereferencing
     685:  * @c: The conditions under which the dereference will take place
     686:  *
     687:  * Return the value of the specified RCU-protected pointer, but omit
     688:  * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
     689:  * is useful in cases where update-side locks prevent the value of the
     690:  * pointer from changing.  Please note that this primitive does -not-
     691:  * prevent the compiler from repeating this reference or combining it
     692:  * with other references, so it should not be used without protection
     693:  * of appropriate locks.
     694:  *
     695:  * This function is only for update-side use.  Using this function
     696:  * when protected only by rcu_read_lock() will result in infrequent
     697:  * but very ugly failures.
     698:  */
     699: #define rcu_dereference_protected(p, c) \
     700:     __rcu_dereference_protected((p), (c), __rcu)
     701: 
     702: 
     703: /**
     704:  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
     705:  * @p: The pointer to read, prior to dereferencing
     706:  *
     707:  * This is a simple wrapper around rcu_dereference_check().
     708:  */
     709: #define rcu_dereference(p) rcu_dereference_check(p, 0)
     710: 
     711: /**
     712:  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
     713:  * @p: The pointer to read, prior to dereferencing
     714:  *
     715:  * Makes rcu_dereference_check() do the dirty work.
     716:  */
     717: #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
     718: 
     719: /**
     720:  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
     721:  * @p: The pointer to read, prior to dereferencing
     722:  *
     723:  * Makes rcu_dereference_check() do the dirty work.
     724:  */
     725: #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
     726: 
     727: /**
     728:  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
     729:  *
     730:  * When synchronize_rcu() is invoked on one CPU while other CPUs
     731:  * are within RCU read-side critical sections, then the
     732:  * synchronize_rcu() is guaranteed to block until after all the other
     733:  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
     734:  * on one CPU while other CPUs are within RCU read-side critical
     735:  * sections, invocation of the corresponding RCU callback is deferred
     736:  * until after the all the other CPUs exit their critical sections.
     737:  *
     738:  * Note, however, that RCU callbacks are permitted to run concurrently
     739:  * with new RCU read-side critical sections.  One way that this can happen
     740:  * is via the following sequence of events: (1) CPU 0 enters an RCU
     741:  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
     742:  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
     743:  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
     744:  * callback is invoked.  This is legal, because the RCU read-side critical
     745:  * section that was running concurrently with the call_rcu() (and which
     746:  * therefore might be referencing something that the corresponding RCU
     747:  * callback would free up) has completed before the corresponding
     748:  * RCU callback is invoked.
     749:  *
     750:  * RCU read-side critical sections may be nested.  Any deferred actions
     751:  * will be deferred until the outermost RCU read-side critical section
     752:  * completes.
     753:  *
     754:  * You can avoid reading and understanding the next paragraph by
     755:  * following this rule: don't put anything in an rcu_read_lock() RCU
     756:  * read-side critical section that would block in a !PREEMPT kernel.
     757:  * But if you want the full story, read on!
     758:  *
     759:  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
     760:  * is illegal to block while in an RCU read-side critical section.  In
     761:  * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
     762:  * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
     763:  * be preempted, but explicit blocking is illegal.  Finally, in preemptible
     764:  * RCU implementations in real-time (with -rt patchset) kernel builds,
     765:  * RCU read-side critical sections may be preempted and they may also
     766:  * block, but only when acquiring spinlocks that are subject to priority
     767:  * inheritance.
     768:  */
     769: static inline void rcu_read_lock(void)
     770: {
     771:     __rcu_read_lock();
     772:     __acquire(RCU);
     773:     rcu_lock_acquire(&rcu_lock_map);
     774:     rcu_lockdep_assert(rcu_is_watching(),
     775:                "rcu_read_lock() used illegally while idle");
     776: }
     777: 
     778: /*
     779:  * So where is rcu_write_lock()?  It does not exist, as there is no
     780:  * way for writers to lock out RCU readers.  This is a feature, not
     781:  * a bug -- this property is what provides RCU's performance benefits.
     782:  * Of course, writers must coordinate with each other.  The normal
     783:  * spinlock primitives work well for this, but any other technique may be
     784:  * used as well.  RCU does not care how the writers keep out of each
     785:  * others' way, as long as they do so.
     786:  */
     787: 
     788: /**
     789:  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
     790:  *
     791:  * See rcu_read_lock() for more information.
     792:  */
     793: static inline void rcu_read_unlock(void)
     794: {
     795:     rcu_lockdep_assert(rcu_is_watching(),
     796:                "rcu_read_unlock() used illegally while idle");
     797:     rcu_lock_release(&rcu_lock_map);
     798:     __release(RCU);
     799:     __rcu_read_unlock();
     800: }
     801: 
     802: /**
     803:  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
     804:  *
     805:  * This is equivalent of rcu_read_lock(), but to be used when updates
     806:  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
     807:  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
     808:  * softirq handler to be a quiescent state, a process in RCU read-side
     809:  * critical section must be protected by disabling softirqs. Read-side
     810:  * critical sections in interrupt context can use just rcu_read_lock(),
     811:  * though this should at least be commented to avoid confusing people
     812:  * reading the code.
     813:  *
     814:  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
     815:  * must occur in the same context, for example, it is illegal to invoke
     816:  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
     817:  * was invoked from some other task.
     818:  */
     819: static inline void rcu_read_lock_bh(void)
     820: {
     821:     local_bh_disable();
     822:     __acquire(RCU_BH);
     823:     rcu_lock_acquire(&rcu_bh_lock_map);
     824:     rcu_lockdep_assert(rcu_is_watching(),
     825:                "rcu_read_lock_bh() used illegally while idle");
     826: }
     827: 
     828: /*
     829:  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
     830:  *
     831:  * See rcu_read_lock_bh() for more information.
     832:  */
     833: static inline void rcu_read_unlock_bh(void)
     834: {
     835:     rcu_lockdep_assert(rcu_is_watching(),
     836:                "rcu_read_unlock_bh() used illegally while idle");
     837:     rcu_lock_release(&rcu_bh_lock_map);
     838:     __release(RCU_BH);
     839:     local_bh_enable();
     840: }
     841: 
     842: /**
     843:  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
     844:  *
     845:  * This is equivalent of rcu_read_lock(), but to be used when updates
     846:  * are being done using call_rcu_sched() or synchronize_rcu_sched().
     847:  * Read-side critical sections can also be introduced by anything that
     848:  * disables preemption, including local_irq_disable() and friends.
     849:  *
     850:  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
     851:  * must occur in the same context, for example, it is illegal to invoke
     852:  * rcu_read_unlock_sched() from process context if the matching
     853:  * rcu_read_lock_sched() was invoked from an NMI handler.
     854:  */
     855: static inline void rcu_read_lock_sched(void)
     856: {
     857:     preempt_disable();
     858:     __acquire(RCU_SCHED);
     859:     rcu_lock_acquire(&rcu_sched_lock_map);
     860:     rcu_lockdep_assert(rcu_is_watching(),
     861:                "rcu_read_lock_sched() used illegally while idle");
     862: }
     863: 
     864: /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
     865: static inline notrace void rcu_read_lock_sched_notrace(void)
     866: {
     867:     preempt_disable_notrace();
     868:     __acquire(RCU_SCHED);
     869: }
     870: 
     871: /*
     872:  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
     873:  *
     874:  * See rcu_read_lock_sched for more information.
     875:  */
     876: static inline void rcu_read_unlock_sched(void)
     877: {
     878:     rcu_lockdep_assert(rcu_is_watching(),
     879:                "rcu_read_unlock_sched() used illegally while idle");
     880:     rcu_lock_release(&rcu_sched_lock_map);
     881:     __release(RCU_SCHED);
     882:     preempt_enable();
     883: }
     884: 
     885: /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
     886: static inline notrace void rcu_read_unlock_sched_notrace(void)
     887: {
     888:     __release(RCU_SCHED);
     889:     preempt_enable_notrace();
     890: }
     891: 
     892: /**
     893:  * rcu_assign_pointer() - assign to RCU-protected pointer
     894:  * @p: pointer to assign to
     895:  * @v: value to assign (publish)
     896:  *
     897:  * Assigns the specified value to the specified RCU-protected
     898:  * pointer, ensuring that any concurrent RCU readers will see
     899:  * any prior initialization.
     900:  *
     901:  * Inserts memory barriers on architectures that require them
     902:  * (which is most of them), and also prevents the compiler from
     903:  * reordering the code that initializes the structure after the pointer
     904:  * assignment.  More importantly, this call documents which pointers
     905:  * will be dereferenced by RCU read-side code.
     906:  *
     907:  * In some special cases, you may use RCU_INIT_POINTER() instead
     908:  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
     909:  * to the fact that it does not constrain either the CPU or the compiler.
     910:  * That said, using RCU_INIT_POINTER() when you should have used
     911:  * rcu_assign_pointer() is a very bad thing that results in
     912:  * impossible-to-diagnose memory corruption.  So please be careful.
     913:  * See the RCU_INIT_POINTER() comment header for details.
     914:  */
     915: #define rcu_assign_pointer(p, v) \
     916:     __rcu_assign_pointer((p), (v), __rcu)
     917: 
     918: /**
     919:  * RCU_INIT_POINTER() - initialize an RCU protected pointer
     920:  *
     921:  * Initialize an RCU-protected pointer in special cases where readers
     922:  * do not need ordering constraints on the CPU or the compiler.  These
     923:  * special cases are:
     924:  *
     925:  * 1.    This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
     926:  * 2.    The caller has taken whatever steps are required to prevent
     927:  *    RCU readers from concurrently accessing this pointer -or-
     928:  * 3.    The referenced data structure has already been exposed to
     929:  *    readers either at compile time or via rcu_assign_pointer() -and-
     930:  *    a.    You have not made -any- reader-visible changes to
     931:  *        this structure since then -or-
     932:  *    b.    It is OK for readers accessing this structure from its
     933:  *        new location to see the old state of the structure.  (For
     934:  *        example, the changes were to statistical counters or to
     935:  *        other state where exact synchronization is not required.)
     936:  *
     937:  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
     938:  * result in impossible-to-diagnose memory corruption.  As in the structures
     939:  * will look OK in crash dumps, but any concurrent RCU readers might
     940:  * see pre-initialized values of the referenced data structure.  So
     941:  * please be very careful how you use RCU_INIT_POINTER()!!!
     942:  *
     943:  * If you are creating an RCU-protected linked structure that is accessed
     944:  * by a single external-to-structure RCU-protected pointer, then you may
     945:  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
     946:  * pointers, but you must use rcu_assign_pointer() to initialize the
     947:  * external-to-structure pointer -after- you have completely initialized
     948:  * the reader-accessible portions of the linked structure.
     949:  */
     950: #define RCU_INIT_POINTER(p, v) \
     951:     do { \
     952:         p = (typeof(*v) __force __rcu *)(v); \
     953:     } while (0)
     954: 
     955: /**
     956:  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
     957:  *
     958:  * GCC-style initialization for an RCU-protected pointer in a structure field.
     959:  */
     960: #define RCU_POINTER_INITIALIZER(p, v) \
     961:         .p = (typeof(*v) __force __rcu *)(v)
     962: 
     963: /*
     964:  * Does the specified offset indicate that the corresponding rcu_head
     965:  * structure can be handled by kfree_rcu()?
     966:  */
     967: #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
     968: 
     969: /*
     970:  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
     971:  */
     972: #define __kfree_rcu(head, offset) \
     973:     do { \
     974:         BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
     975:         kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
     976:     } while (0)
     977: 
     978: /**
     979:  * kfree_rcu() - kfree an object after a grace period.
     980:  * @ptr:    pointer to kfree
     981:  * @rcu_head:    the name of the struct rcu_head within the type of @ptr.
     982:  *
     983:  * Many rcu callbacks functions just call kfree() on the base structure.
     984:  * These functions are trivial, but their size adds up, and furthermore
     985:  * when they are used in a kernel module, that module must invoke the
     986:  * high-latency rcu_barrier() function at module-unload time.
     987:  *
     988:  * The kfree_rcu() function handles this issue.  Rather than encoding a
     989:  * function address in the embedded rcu_head structure, kfree_rcu() instead
     990:  * encodes the offset of the rcu_head structure within the base structure.
     991:  * Because the functions are not allowed in the low-order 4096 bytes of
     992:  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
     993:  * If the offset is larger than 4095 bytes, a compile-time error will
     994:  * be generated in __kfree_rcu().  If this error is triggered, you can
     995:  * either fall back to use of call_rcu() or rearrange the structure to
     996:  * position the rcu_head structure into the first 4096 bytes.
     997:  *
     998:  * Note that the allowable offset might decrease in the future, for example,
     999:  * to allow something like kmem_cache_free_rcu().
    1000:  *
    1001:  * The BUILD_BUG_ON check must not involve any function calls, hence the
    1002:  * checks are done in macros here.
    1003:  */
    1004: #define kfree_rcu(ptr, rcu_head)                    \
    1005:     __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
    1006: 
    1007: #ifdef CONFIG_RCU_NOCB_CPU
    1008: extern bool rcu_is_nocb_cpu(int cpu);
    1009: #else
    1010: static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
    1011: #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
    1012: 
    1013: 
    1014: /* Only for use by adaptive-ticks code. */
    1015: #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
    1016: extern bool rcu_sys_is_idle(void);
    1017: extern void rcu_sysidle_force_exit(void);
    1018: #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
    1019: 
    1020: static inline bool rcu_sys_is_idle(void)
    1021: {
    1022:     return false;
    1023: }
    1024: 
    1025: static inline void rcu_sysidle_force_exit(void)
    1026: {
    1027: }
    1028: 
    1029: #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
    1030: 
    1031: 
    1032: #endif /* __LINUX_RCUPDATE_H */
    1033: